16.海濱某城市A附近海面上有一臺(tái)風(fēng),在城市A測(cè)得該臺(tái)風(fēng)中心位于方位角150°、距離400km的海面P處,并正以70km/h的速度沿北偏西60°的方向移動(dòng),如果臺(tái)風(fēng)侵襲的范圍是半徑為250km的圓形區(qū)域.
(1)幾小時(shí)后該城市開始受到臺(tái)風(fēng)侵襲?
(2)該臺(tái)風(fēng)將持續(xù)影響該城市多長(zhǎng)時(shí)間?
(參考數(shù)據(jù):$\sqrt{3}≈1.73$)

分析 (1)由余弦定理求出BP,即可得出結(jié)論;
(2)設(shè)臺(tái)風(fēng)中心移到點(diǎn)C處時(shí) AC=250(與B不重合)由(1)知$CP=200\sqrt{3}+150$,故BC=300km,即可得出結(jié)論.

解答 解:(1)設(shè)臺(tái)風(fēng)中心在點(diǎn)B處時(shí)該城市開始受到臺(tái)風(fēng)侵襲,即BA=250km,
由題AP=400,∠APB=30°,由余弦定理得${250^2}={400^2}+B{P^2}-400\sqrt{3}BP$,
解得$BP=200\sqrt{3}-150(200\sqrt{3}+150$舍去),
∴$\frac{{200\sqrt{3}-150}}{70}≈\frac{196}{70}=2.8$.
故2.8小時(shí)后該城市開始受到臺(tái)風(fēng)侵襲.
(2)設(shè)臺(tái)風(fēng)中心移到點(diǎn)C處時(shí) AC=250(與B不重合)
由(1)知$CP=200\sqrt{3}+150$,故BC=300km
∴$\frac{300}{70}≈4.29$
即該臺(tái)風(fēng)中心持續(xù)影響該城市4.29小時(shí).

點(diǎn)評(píng) 本題主要考查了解三角形的實(shí)際應(yīng)用;關(guān)鍵是由題意將問題轉(zhuǎn)化為解三角形的問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C對(duì)應(yīng)的邊分別為a、b、c,4sin2$\frac{A+C}{2}-cos2B=\frac{7}{2}$
(Ⅰ)求角B的度數(shù)   
(Ⅱ)若b=$\sqrt{3}$,a+c=3,求a和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.四面體的頂點(diǎn)和各棱的中點(diǎn)共計(jì)10個(gè)點(diǎn),在其中取4個(gè)點(diǎn),則這四個(gè)點(diǎn)不共面的概率為$\frac{47}{70}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)為F1、F2,右頂點(diǎn)為A,上頂點(diǎn)為B.
(1)若2AB=$\sqrt{3}$F1F2,求橢圓的離心率;
(2)在(1)的條件下,設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段PB為直徑的圓C過點(diǎn)F1,經(jīng)過原點(diǎn)O的直線l與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{bn}共有8項(xiàng)且滿足b1=2014,b8=2015,且bn+1-bn∈{-1,$\frac{1}{3}$,1},(其中n=1,2,…,7),則這樣的數(shù)列{bn}共有( 。
A.7個(gè)B.252個(gè)C.210個(gè)D.35個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)若對(duì)于任意的實(shí)數(shù)滿足|x-1|+|x-3|≥a2+a恒成立,求實(shí)數(shù)a的取值范圍;
(2)若a+b=1,求$\frac{1}{4|b|}$+$\frac{|b|}{a}$的最小值,并指出取得最小值時(shí)a的值;
(3)求y=$\frac{2a}{{{a^2}+1}}$,a∈[2,+∞)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.各個(gè)棱長(zhǎng)均為a的三棱錐的外接球的表面積為$\frac{3}{2}{a^2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosB=(3c-b)cosA.
(1)求sinA;
(2)若a=2$\sqrt{2}$,且△ABC的面積為$\sqrt{2}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在復(fù)平面內(nèi),△AOB中,O是原點(diǎn),點(diǎn)A,B對(duì)應(yīng)的復(fù)數(shù)分別為z1,z2,且z1,z2滿足以下條件:
(1)|z1-3|=1,
(2)z2=(-1+i)z1;求△AOB面積的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案