13.將函數(shù)y=4sin(4x+$\frac{π}{6}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,再向右平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象的一個(gè)對(duì)稱中心為( 。
A.$(\frac{13π}{48},0)$B.$(\frac{π}{8},0)$C.$(\frac{5π}{8},0)$D.$(\frac{7π}{12},0)$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得所得函數(shù)的解析式,再利用正弦函數(shù)的圖象的對(duì)稱性,求得所得函數(shù)圖象的一個(gè)對(duì)稱中心.

解答 解:將函數(shù)y=4sin(4x+$\frac{π}{6}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,可得y=4sin(2x+$\frac{π}{6}$)的圖象,
再向右平移$\frac{π}{6}$個(gè)單位,所得函數(shù)y=4sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]═4sin(2x-$\frac{π}{6}$)圖象,
令2x-$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,故所得圖象的一個(gè)對(duì)稱中心為($\frac{7π}{12}$,0),
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱,且在y軸右側(cè)的第一個(gè)極值點(diǎn)為x=$\frac{π}{3}$,則函數(shù)f(x)的最小正周期為$\frac{4π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.${(a\sqrt{x}-\frac{1}{{\sqrt{x}}})^6}$的展開(kāi)式中x2的系數(shù)為-192,則實(shí)數(shù)a=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若直線l1:x+2y-4=0與l2:mx+(2-m)y-3=0平行,則實(shí)數(shù)m的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.關(guān)于x的不等式(x2+2x+2)sin$\frac{2x+2}{{x}^{2}+2x+2}$≤ax+a的解集為[-1,+∞),實(shí)數(shù)a的取值范圍是( 。
A.[1,+∞)B.[2,+∞)C.[3,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.從1~9這九個(gè)數(shù)字里不重復(fù)地選取兩個(gè)數(shù),兩數(shù)之差是4的倍數(shù)的選法有6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.將3種作物全部種植在如圖的5塊試驗(yàn)田里,每塊試驗(yàn)田種植一種作物且相鄰的試驗(yàn)田不能種植同一種作物,則共有多少種種植方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.高三(2)班有43名學(xué)生,昨天上語(yǔ)文課時(shí),張老師叫到了其中的9名同學(xué)回答問(wèn)題,今天的語(yǔ)文課張老師又要叫9名同學(xué)回答問(wèn)題.如果今天每個(gè)人被叫到的可能性相同,計(jì)算昨天回答問(wèn)題的學(xué)生中有3名又被叫到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.三角形三邊分別為a=$\sqrt{7}$,b=2,c=1,求最大角.

查看答案和解析>>

同步練習(xí)冊(cè)答案