8.關(guān)于x的不等式(x2+2x+2)sin$\frac{2x+2}{{x}^{2}+2x+2}$≤ax+a的解集為[-1,+∞),實數(shù)a的取值范圍是( 。
A.[1,+∞)B.[2,+∞)C.[3,+∞)D.[4,+∞)

分析 根據(jù)極限的思想$\frac{sinx}{x}$=1,分離參數(shù),即可得到a≥2×$\frac{sin\frac{2x+2}{{x}^{2}+2x+2}}{\frac{2x+2}{{x}^{2}+2x+2}}$,即可求出答案.

解答 解:由于$\frac{sinx}{x}$=1,
∵x2+2x+2≤ax+a的解集為[-1,+∞),
∴a≥2×$\frac{sin\frac{2x+2}{{x}^{2}+2x+2}}{\frac{2x+2}{{x}^{2}+2x+2}}$≥2,
∴實數(shù)a的取值范圍為[2,+∞),
故選:B.

點評 本題考考查了不等式的解法,關(guān)鍵是分離參數(shù),利用極限的思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.有兩位環(huán)保專家從A,B,C三個城市中每人隨機(jī)選取一個城市完成一項霧霾天氣調(diào)查報告,兩位專家選取的城市可以相同,也可以不同.
(1)求兩位環(huán)保專家選取的城市各不相同的概率;
(2)求兩位環(huán)保專家中至少有一名專家選擇A城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=sin2x,g(x)=f(x+$\frac{π}{6}$),則函數(shù)g(x)的單調(diào)遞增區(qū)間為$[-\frac{5π}{12}+kπ,\frac{π}{12}+kπ],k∈Z$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.袋中有形狀、大小都相同的5只球,其中有2只紅球,3只白球,若從中隨機(jī)一次摸出2只球,則這2只球顏色不同的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=$\sqrt{5}$,b=3,sinC=2sinA,則△ABC的面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)y=4sin(4x+$\frac{π}{6}$)的圖象上各點的橫坐標(biāo)伸長為原來的2倍,再向右平移$\frac{π}{6}$個單位,所得函數(shù)圖象的一個對稱中心為( 。
A.$(\frac{13π}{48},0)$B.$(\frac{π}{8},0)$C.$(\frac{5π}{8},0)$D.$(\frac{7π}{12},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.由1、2、3、4、5這五個數(shù)字組成沒有重復(fù)數(shù)字的五位數(shù),將它們從小到大排列,第80個數(shù)是42153.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等比數(shù)列{an}滿足:a1=1,Sn為其前n項和,2S1,2S3,5S2成等差數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=log${\;}_{\frac{3}{4}}$|a1|+log${\;}_{\frac{3}{4}}$|a2|+…+log${\;}_{\frac{3}{4}}$|an+2|(bn≠0),求數(shù)列{$\frac{1}{_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.x-2y+3>0表示的平面區(qū)域在直線x-2y+3=0的下方.(填“上”或“下”)

查看答案和解析>>

同步練習(xí)冊答案