投球3次,事件A1表示“投中i次”,其中i=0,1,2,3.那么A=A1∪A2∪A3表示的是(  )
A、全部投中B、必然投中
C、至少有1次投中D、投中3次
考點:互斥事件與對立事件
專題:概率與統(tǒng)計
分析:由題意可得,事件A1、A2、A3,是彼此互斥的事件,且A0∪A1∪A2∪A3為必然事件,A=A1∪A2∪A3表示的是投球三次至少擊中一次,從而得到答案.
解答: 解:由題意可得,事件A1、A2、A3,是彼此互斥的事件,且A0∪A1∪A2∪A3 為必然事件,
A=A1∪A2∪A3表示的是投球三次至少擊中一次,
故選:C.
點評:本題主要考查互斥事件和必然事件,并事件的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ex-1,x≥0
-x2-2x,x<0
,若函數(shù)g(x)=f(x)-|x-a|恰有兩個零點,則實數(shù)a的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(3,
3
)與圓x2+y2-4x+3=0相切的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈[0,1],函數(shù)f(x)=x2-ln(x+
1
2
),g(x)=x3-3a2x-4a.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)設a≤-1,若?x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
x
+
1
2
4x
n的二項展開式中,前三項系數(shù)成等差數(shù)列,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且滿足
Sn
n
=n+2(n∈N*
(1)求數(shù)列an通項公式
(2)設bn=
1
anan+1
,Tn是數(shù)列{bn}的前n項和,求使Tn
m
72
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)是偶函數(shù),且在(0,+∞)上是增函數(shù)的是(  )
A、f(x)=(
1
2
x
B、f(x)=x 
2
3
C、f(x)=lnx
D、f(x)=-x2+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a=
3
,A=
π
3
,則
a+b+c
sinA+sinB+sinC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b是兩條不同的直線,且b?平面α,則“a⊥b”是“a⊥α”的( 。
A、充分且不必要條件
B、必要且不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案