7.已知函數(shù)f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$)(2$\sqrt{1-{x}^{2}}$-1),若關(guān)于x的方程f(x)=m有實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍為-$\sqrt{2}$≤m≤2.

分析 構(gòu)造函數(shù)令t=$\sqrt{1+x}$+$\sqrt{1-x}$,
($\sqrt{1+x}$+$\sqrt{1-x}$)2=2+2$\sqrt{1-{x}^{2}}$=t2,通過求導(dǎo),判斷函數(shù)的單調(diào)性,求出函數(shù)的最值,得出m的取值范圍.

解答 解:令t=$\sqrt{1+x}$+$\sqrt{1-x}$,
($\sqrt{1+x}$+$\sqrt{1-x}$)2=2+2$\sqrt{1-{x}^{2}}$=t2,
∴2$\sqrt{1-{x}^{2}}$-1=t2-3,
∴-1≤t2-3≤1,
∴$\sqrt{2}$≤t≤2,
∴f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$)(2$\sqrt{1-{x}^{2}}$-1)
=t3-3t,
y'=3t2-3,
∴定義域內(nèi)遞增,
∴-$\sqrt{2}$≤f(x)≤2,
∵關(guān)于x的方程f(x)=m有實(shí)數(shù)解,
∴-$\sqrt{2}$≤m≤2,
故答案為-$\sqrt{2}$≤m≤2,

點(diǎn)評 考查了函數(shù)的構(gòu)造和利用導(dǎo)函數(shù)求出函數(shù)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB是圓O的一條切線,切點(diǎn)為B,AF、AD都是圓O的割線,AD交圓O于點(diǎn)C,AF交圓O于點(diǎn)E,且∠ABC=∠ECF,連接EC、FB,BF過圓心O.
(I)證明:∠CBF=∠EFB;
(Ⅱ)已知AB=5,AC=4,BD=OB=2,求CF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知0<x<$\frac{π}{2}$,證明:sinx<x<tanx;
(2)求證:函數(shù)f(x)=$\frac{sinx}{x}$在x∈(0,π)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x+$\frac{1}{2}$|+a|x-$\frac{3}{2}$|.
(Ⅰ)當(dāng)a=-1時(shí),解不等式f(x)≤3x;
(Ⅱ)當(dāng)a=2時(shí),若關(guān)于x的不等式2f(x)+1<|1-b|的解集為空集,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某廠生產(chǎn)產(chǎn)品x件的總成本C(x)=1000+x2(萬元),已知產(chǎn)品單價(jià)P(萬元)與產(chǎn)品件數(shù)x滿足:P2=$\frac{k}{x}$,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬元.
(1)設(shè)產(chǎn)量為x件時(shí),總利潤為L(x)(萬元),求L(x)的解析式;
(2)產(chǎn)量x定為多少時(shí)總利潤L(x)(萬元)最大?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為$\left\{\begin{array}{l}x=a+acosθ\\ y=asinθ\end{array}$(θ為參數(shù),0<a<5),直線l:ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$,若直線l與曲線C相交于A,B兩點(diǎn),且|AB|=2$\sqrt{2}$.
(Ⅰ)求a;
(Ⅱ)若M,N為曲線C上的兩點(diǎn),且∠MON=$\frac{π}{3}$,求|OM|+|ON|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程lg(4x2+4ax)=1g(4x-a+1)有唯一解,則實(shí)數(shù)a的取值范圍是[$\frac{1}{5}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.分別作出下列函數(shù)的圖象,并指出函數(shù)的值城.
(1)y=3x-1(-1≤x≤4,且x∈Z)
(2)y=2x2-4x-3(0≤x<3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=lnx+1.
(1)已知函數(shù)$F(x)=f(x)+\frac{1}{4}{x^2}-\frac{3}{2}x+\frac{1}{4}$,求函數(shù)F(x)的極值;
(2)已知函數(shù)G(x)=f(x)+ax2-(2a+1)x+a(a>0).若存在實(shí)數(shù)m∈(2,3),使得當(dāng)x∈(0,m]時(shí),函數(shù)G(x)的最大值為G(m),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案