15.已知函數(shù)f(x)=|2x+$\frac{1}{2}$|+a|x-$\frac{3}{2}$|.
(Ⅰ)當a=-1時,解不等式f(x)≤3x;
(Ⅱ)當a=2時,若關(guān)于x的不等式2f(x)+1<|1-b|的解集為空集,求實數(shù)b的取值范圍.

分析 (Ⅰ)當a=-1時,不等式f(x)=|2x+$\frac{1}{2}$|-|x-$\frac{3}{2}$|≤3x,再等價轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求.
(Ⅱ)當a=2時,由題意可得,|1-b|>7+1的解集為∅,即|1-b|≤8恒成立,即-8≤b-1≤8,由此求得實數(shù)b的取值范圍.

解答 解:(Ⅰ)當a=-1時,不等式f(x)=|2x+$\frac{1}{2}$|-|x-$\frac{3}{2}$|≤3x,
等價于$\left\{\begin{array}{l}{x<-\frac{1}{4}}\\{-2x-\frac{1}{2}-(\frac{3}{2}-x)≤3x}\end{array}\right.$①;或 $\left\{\begin{array}{l}{-\frac{1}{4}≤x<\frac{3}{2}}\\{2x+\frac{1}{2}-(\frac{3}{2}-x)≤3x}\end{array}\right.$②;或 $\left\{\begin{array}{l}{x≥\frac{3}{2}}\\{2x+\frac{1}{2}-(x-\frac{3}{2})≤3x}\end{array}\right.$.
解①求得-$\frac{1}{2}$≤x<-$\frac{1}{4}$,解②求得-$\frac{1}{4}$≤x<$\frac{3}{2}$,解③求得x≥$\frac{3}{2}$,
故原不等式的解集為{x|x≥-$\frac{1}{2}$}.
(Ⅱ)當a=2時,若關(guān)于x的不等式2f(x)+1<|1-b|,即 2(|2x+$\frac{1}{2}$|+2|x-$\frac{3}{2}$|)+1<|1-b|,
即|4x+1|+|4x-6|+1<|1-b|.
由于|4x+1|+|4x-6|≥|(4x+1)-(4x-6)|=7,∴|1-b|>7+1的解集為∅,即|1-b|≤8恒成立,
∴-8≤b-1≤8,即-7≤b≤9,即要求的實數(shù)b的取值范圍為[-7,9].

點評 本題主要考查絕對值的意義,絕對值不等式的解法,函數(shù)的恒成立問題,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,在四棱錐S-ABCD中,底面ABCD為梯形,AD∥BC,AD⊥平面SCD,AD=DC=BC=1,SD=2,∠SDC=120°.
(1)求SC與平面SAB所成角的正弦值.
(2)求平面SAD與平面SAB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),y=f′(x)的圖象如圖所示,則y=f(x)的圖象最有可能是圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若函數(shù)f(x)=log2x在x∈[1,4]上滿足f(x)≤m2-3am+2恒成立,則當a∈[-1,1]時,實數(shù)m的取值范圍是( 。
A.[-$\frac{1}{3}$,$\frac{1}{3}$]B.(-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)∪{0}C.[-3,3]D.(-∞,-3]∪[3,+∞)∪{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在極坐標系中,直線l的極坐標方程為θ=$\frac{π}{3}$(ρ∈R),以極坐標為原點,極軸為x軸非負半軸建立直角坐標系,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ+2}\\{y=sinθ}\end{array}\right.$.
(I)寫出直線l的直角坐標方程;
(Ⅱ)設(shè)點P在直線l上,過點P作圓C的切線,切點為M,N,當∠MPN最大時,求點P的直角坐標系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=ex+ae-x,若f′(x)≥2$\sqrt{3}$恒成立,則a的取值范圍為( 。
A.[3,+∞)B.(0,3]C.[-3,0)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$)(2$\sqrt{1-{x}^{2}}$-1),若關(guān)于x的方程f(x)=m有實數(shù)解,則實數(shù)m的取值范圍為-$\sqrt{2}$≤m≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖都是正方體的表面展開圖,還原成正方體后,其中兩個完全一樣的是(  )
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x的最小正周期和最大值分別是( 。
A.2π,1B.π,1C.π,$\frac{3}{2}$D.2π,$\frac{3}{2}$

查看答案和解析>>

同步練習冊答案