18.如圖所示,設(shè)P為圓O外的點(diǎn),過點(diǎn)P作圓O的切線PA,切點(diǎn)為A,過點(diǎn)P作圓O的割線PBC,與圓交于B,C兩點(diǎn),AH⊥OP,垂足為H.
(1)求證:△PHB~△PCO;
(2)已知圓O的半徑為1,PA=$\sqrt{3}$,PB=$\frac{\sqrt{6}}{2}$,求四邊形BCOH的面積.

分析 (1)由射影定理知:PA2=PH•PO,根據(jù)切線長定理知:PA2=PB•PC,即可證明:△PHB~△PCO;
(2)求出S△OCP=$\frac{1}{2}×1×\sqrt{6}×\frac{\sqrt{10}}{4}$=$\frac{\sqrt{15}}{4}$.由△PHB∽△PCO,相似比為$\frac{PB}{PO}$=$\frac{\sqrt{6}}{4}$,面積比為($\frac{\sqrt{6}}{4}$)2=$\frac{3}{8}$,從而求出四邊形BCOH的面積.

解答 證明:(1)在直角△POA中,由射影定理知:PA2=PH•PO,
又根據(jù)切線長定理知:PA2=PB•PC,
從而PH•PO=PB•PC,即$\frac{PH}{PC}=\frac{PB}{PO}$,
∵∠BPH=∠OPC,
∴△PHB~△PCO;
解:(2)由勾股定理PO=2,由切線長定理PA2=PB•PC,可得PC=$\sqrt{6}$,
在△POC中,cosC=$\frac{1+6-4}{2×1×\sqrt{6}}$=$\frac{\sqrt{6}}{4}$,
∴sinC=$\frac{\sqrt{10}}{4}$
所以S△OCP=$\frac{1}{2}×1×\sqrt{6}×\frac{\sqrt{10}}{4}$=$\frac{\sqrt{15}}{4}$.
由△PHB∽△PCO,相似比為$\frac{PB}{PO}$=$\frac{\sqrt{6}}{4}$,面積比為($\frac{\sqrt{6}}{4}$)2=$\frac{3}{8}$
從而四邊形BCOH的面積S=$\frac{5}{8}$S△OCP=$\frac{5}{32}\sqrt{15}$.

點(diǎn)評(píng) 本題考查三角形相似的判定與性質(zhì),考查切線長定理、射影定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,是一曲邊三角形地塊,其中曲邊AB是以A為頂點(diǎn),AC為對(duì)稱軸的拋物線的一部分,點(diǎn)B到AC邊的距離為2Km,另外兩邊AC、BC的長度分別為8Km,2$\sqrt{5}$Km.現(xiàn)欲在此地塊內(nèi)建一形狀為直角梯形DECF的科技園區(qū).求科技園區(qū)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,已知AB是⊙O的直徑,AB=2,AC和AD是⊙O的兩條弦,AC=$\sqrt{2}$,AD=$\sqrt{3}$,則∠CAD的弧度數(shù)為75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=loga(a-ax)(0<a<1).
(1)求函數(shù)的定義域和值域;
(2)判斷函數(shù)的單調(diào)性;
(3)若f-1(x2-2)>f(x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知函數(shù)f(x)=log2(4x+1)-x
(1)判斷f(x)的奇偶性并加以證明;
(2)判斷f(x)的單調(diào)性(不需要證明);
(3)解關(guān)于m的不等式f(m)-f(2m+1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義運(yùn)算“*”如下:a*b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,關(guān)于函數(shù)f(x)=sinx*cosx有下列四個(gè)結(jié)論:
①函數(shù)f(x)值域?yàn)閇-1,1];
②當(dāng)且僅當(dāng)x=2kπ+$\frac{π}{2}$(k∈Z)時(shí),函數(shù)f(x)取得最大值;
③f(x)是以π為最小正周期的周期函數(shù);
④當(dāng)且僅當(dāng)2kπ+π<x<2kπ+$\frac{3π}{2}$(k∈Z)時(shí),函數(shù)f(x)<0.
其中結(jié)論正確的是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知點(diǎn)H在圓D:(x-2)2+(y+3)2=32上運(yùn)動(dòng),點(diǎn)P坐標(biāo)為(-6,3),線段PH中點(diǎn)為M,
(1)求點(diǎn)M的軌跡方程,
(2)平面內(nèi)是否存在定點(diǎn)A(a,b),使M到O(0,0)、A的距離之比為常數(shù)λ(λ≠1),若存在,求出A的坐標(biāo)及λ的值;若不存在,說明理由;
(3)若直線y=kx與M的軌跡交于B、C兩點(diǎn),N(0,m)使NB⊥NC,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式:y=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a為常數(shù),已知銷售的價(jià)格為5元/千克時(shí),每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過A(m,1)與B(-1,m)的直線與過點(diǎn)P(1,2),Q(-5,0)的直線垂直,則m=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案