8.過A(m,1)與B(-1,m)的直線與過點P(1,2),Q(-5,0)的直線垂直,則m=-2.

分析 直接利用兩條直線的斜率乘積為-1,求解即可.

解答 解:過點A(m,1)與B(-1,m)的直線的斜率$\frac{m-1}{-1-m}$,過點P(1,2),Q(-5,0)的直線的斜率為:$\frac{2-0}{1+5}$=$\frac{1}{3}$.
因為兩條直線垂直,所以$\frac{m-1}{-1-m}$×$\frac{1}{3}$=-1,解得m=-2.
故答案為:-2.

點評 本題考查直線的斜率的求法,直線垂直條件的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,設(shè)P為圓O外的點,過點P作圓O的切線PA,切點為A,過點P作圓O的割線PBC,與圓交于B,C兩點,AH⊥OP,垂足為H.
(1)求證:△PHB~△PCO;
(2)已知圓O的半徑為1,PA=$\sqrt{3}$,PB=$\frac{\sqrt{6}}{2}$,求四邊形BCOH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知P是直線3x+4y+8=0上的動點,PA,PB是圓x2+y2-2x-2y+1=0的切線,A,B是切點,C是圓心,那么四邊形PACB面積的最小值是 ( 。
A.$2\sqrt{2}$B.2C.3D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.把下列參數(shù)方程化為普通方程
(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù));
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ為參數(shù),θ∈[0,2π])

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+bx+c有兩個零點0和-2,且g(x)和f(x)的圖象關(guān)于原點對稱.
(1)求函數(shù)f(x)和g(x)的解析式;
(2)解不等式f(x)≥g(x)+6x-4;
(3)如果f(x)定義在[m,m+1],f(x)的最大值為g(m),求g(m)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,則f(-$\frac{21π}{4}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.a(chǎn),b,c表示三角形ABC的三邊,$|\begin{array}{l}{a}&&{c}\\{c}&{a}&\\&{c}&{a}\end{array}|$=0,則三角形ABC一定不是( 。
A.等腰三角形B.銳角三角形C.等邊三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某商場銷售一種商品,已知該商品每件成本為6元,若每件售價為x元(x>6),則年銷售量W(萬件)與每件售價x(元)之間滿足關(guān)系式:W=kx2+21x+18,且當每件售價為10元時,年銷售量為28萬件.
(Ⅰ)試確定k的值,并求該商場的年利潤f(x)關(guān)于售價x的函數(shù)關(guān)系式;
(Ⅱ)試確定售價x的值,使年利潤f(x)最大,并求出最大年利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.以橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的中心O為圓心,且以其短軸長為直徑的圓可稱為該橢圓的“伴隨圓”,記為C1.已知橢圓C的右焦點為($\frac{{\sqrt{3}}}{2}$,0),且過點($\frac{1}{2}$,$\frac{{\sqrt{3}}}{4}$).
(I)求橢圓C及其“伴隨圓”C1的方程;
(Ⅱ)過點M(t,0)作C1的切線l交橢圓C于A,B兩點,求△AOB(O為坐標原點)的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案