分析 求出雙曲線的方程,由$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0得MF1⊥MF2,可知點M在以F1F2為直徑的圓x2+y2=3上,由此可以推導(dǎo)出點M到x軸的距離.
解答 解:∵雙曲線C與雙曲線$\frac{{y}^{2}}{2}$-x2=1有相同的漸近線,
∴設(shè)雙曲線C:$\frac{{y}^{2}}{2}$-x2=λ,
∵C的一個頂點為(1,0),
∴λ=-1,
∴雙曲線C:x2-$\frac{{y}^{2}}{2}$=1的焦點為F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0).
又∵$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,
∴MF1⊥MF2,∴點M在以F1F2為直徑的圓x2+y2=3上
故與x2-$\frac{{y}^{2}}{2}$=1聯(lián)立得|y|=$\frac{2\sqrt{3}}{3}$,
∴點M到x軸的距離為$\frac{2\sqrt{3}}{3}$.
點評 本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時要注意挖掘隱含條件.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{3}$-1,2) | B. | (2,$\sqrt{3}$+1) | C. | ($\sqrt{3}$-1,$\sqrt{3}$+1) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com