偶函數(shù)f(x)(x∈R)滿足f(-4)=f(1)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增,則不等式xf(x)<0的解集是
 
考點:奇偶性與單調(diào)性的綜合
專題:計算題,數(shù)形結合,函數(shù)的性質及應用,不等式的解法及應用
分析:利用偶函數(shù)關于y軸對稱的性質,并結合題中給出函數(shù)的單調(diào)區(qū)間畫出函數(shù)f(x)的圖象,再由xf(x)<0得到x與f(x)異號得出結論.
解答: 解:∵f(x)是偶函數(shù)
∴f(-x)=f(x)即f(4)=f(-1)=0,
又∵f(x)在區(qū)間[0,3]與[3,+∞)上
分別遞減和遞增得到圖象如圖:
由圖可知,當x>0時要xf(x)<0只需f(x)<0
即x∈(1,4),
當x<0時,可得x∈(-∞,-4)∪(-1,0)
故答案為:(-∞,-4)∪(-1,0)∪(1,4).
點評:本題考查了利用函數(shù)的奇偶性和單調(diào)性作出函數(shù)的圖象,并利用數(shù)形結合求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且PA⊥面ABCD.
(1)求證:直線PC⊥直線BD;
(2)過直線BD且垂直于直線DC的平面交PC于點E,如果三棱錐E-BCD的體積取得最大值,求此時四棱錐P-ABCD的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用秦九韶算法計算多項式f(x)=2x5-3x4+7x3-9x2+4x-10在x=2時的值時,V3的值為( 。
A、34B、22C、9D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=(
1
3
x,則函數(shù)f(x)的反函數(shù)的零點為( 。
A、2B、-2C、3D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:[(-
2
2]-1=( 。
A、-
1
2
B、
1
2
C、
2
2
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的是(  )
A、φ?{0}
B、0⊆Φ
C、0∈{(0,1)}
D、(1,2)∈{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在數(shù)列{an}中,a1=1,an+1+an=2n,求數(shù)列前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
-x,x≤0
x2,x>0
,若f(a)=4,則實數(shù)a=(  )
A、-4或2B、-4或-2
C、-2或4D、-2或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是海平面上的兩個點,相距800m,在A點測得山頂C的仰角為45°,∠BAD=120°,又在B點測得∠ABD=45°,其中D是點C到水平面的射線,則山高CD=
 
m.

查看答案和解析>>

同步練習冊答案