分析 (1)利用配湊法求解將f(x+1)=x2-2x+3,配湊為f(x+1)=(x+1)2-4(x+1)+6.把x+1看成一個(gè)整體x;即可得到f(x)
(2)利用奇函數(shù)的性質(zhì)求解.當(dāng)x<0時(shí),f(x)=2x+1,當(dāng)x>0時(shí),則-x<0,那么:f(-x)=2-x+1,又f(x)是奇函數(shù),f(-x)=-f(x),即可得到f(x)的解析式.
解答 解:(1)由題意:f(x+1)=x2-2x+3=(x+1)2-4(x+1)+6.
把x+1看成一個(gè)整體x;
∴f(x)=x2-4x+6,
故得f(x)的解析式f(x)=x2-4x+6.
(2)f(x)為定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=2x+1,
當(dāng)x>0時(shí),則-x<0,那么:f(-x)=2-x+1,
又∵f(x)是奇函數(shù),即f(-x)=-f(x),
∴f(-x)=2-x+1=-f(x),
故得f(x)=-2-x-1,
所以當(dāng)x>0時(shí),f(x)的解析式為f(x)=-2-x-1.
點(diǎn)評(píng) 本題考查了配湊法(整體思想)求解析式和函數(shù)的奇偶性的運(yùn)用.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x2 | B. | y=x2-2x | C. | y=sinx | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1+i | B. | -1-i | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x<3} | B. | {x|0<x≤1} | C. | {x|1≤x<3} | D. | {x|0≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1<a<4 | B. | 1<a≤2 | C. | 0<a<1 | D. | 2<a<4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2,4} | B. | {2,5,8} | C. | {2,4,5,6,8} | D. | {4,6} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com