7.設數(shù)f(log2x)的定義域是(2,4),則函數(shù)$f({\frac{x}{2}})$的定義域是(  )
A.(2,4)B.(2,8)C.(8,32)D.$(\frac{1}{2},1)$

分析 根據(jù)復合函數(shù)的定義域之間的關系即可得到結論.

解答 解:∵f(log2x)的定義域是(2,4),
∴2<x<4.
即 1<log2x<2,
由1<$\frac{x}{2}$<2,解得:2<x<4.
則函數(shù)$f({\frac{x}{2}})$的定義域是(2,4).
故選:A.

點評 本題主要考查函數(shù)的定義域及其求法,利用復合函數(shù)定義域之間的關系是解決本題的關鍵,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.若存在實數(shù)x,使f(x)=x,則稱x為f(x)的不動點.已知f(x)=$\frac{2x+a}{x+b}$有兩個關于原點對稱的不動點.
(1)求a,b須滿足的充要條件;
(2)試用y=f(x)和y=x的圖形表示上述兩個不動點的位置(畫草圖).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.角θ的終邊過點(3a-9,a+2),且sin2θ≤0,則a的范圍是( 。
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知點P為橢圓$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1上一點,F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點
(1)若|PF1|=4,N為PF1的中點,則ON=2$\sqrt{3}$-2.
(2)若PF1與y軸的交點M恰為PF1的中點,則M的坐標(0,±$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:y=ax2(a>0),過點P(0,1)的直線l交拋物線C于A、B兩點.
(Ⅰ)若拋物線C的焦點為(0,$\frac{1}{4}$),求該拋物線的方程;
(Ⅱ)已知過點A、B分別作拋物線C的切線l1、l2,交于點M,以線段AB為直徑的圓經(jīng)過點M,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=x2-3|x|-k有兩個零點,則k的取值范圍是( 。
A.(0,+∞)$∪\{-\frac{9}{4}\}$B.$[-\frac{9}{4},+∞)$C.[0,+∞)D.$(-∞,-\frac{9}{4})∪\{0\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.命題“?a∈R,a2≥0”的否定為( 。
A.?a∈R,a2<0B.?a∈R,a2≥0C.?a∉R,a2≥0D.?a∈R,a2<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.p:|x-m|<1,q:x2-8x+12<0,且q是p的必要不充分條件,則m的取值范圍是( 。
A.3<m<5B.3≤m≤5C.m>5或m<3D.m≥5或m≤3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)若$cosθ=\frac{{\sqrt{2}}}{3}$,求$\frac{{sin(θ-5π)cos(θ-\frac{π}{2})cos(8π-θ)}}{{sin(θ-\frac{3π}{2})sin(-θ-4π)}}$的值.
(2)求函數(shù)$f(x)=lg(2cosx-1)+\sqrt{49-{x^2}}$的定義域.

查看答案和解析>>

同步練習冊答案