17.(1)若$cosθ=\frac{{\sqrt{2}}}{3}$,求$\frac{{sin(θ-5π)cos(θ-\frac{π}{2})cos(8π-θ)}}{{sin(θ-\frac{3π}{2})sin(-θ-4π)}}$的值.
(2)求函數(shù)$f(x)=lg(2cosx-1)+\sqrt{49-{x^2}}$的定義域.

分析 (1)直接利用誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系式化簡求解即可.
(2)通過對數(shù)的真數(shù)大于0,開偶次方被開方數(shù)非負(fù),列出不等式組,然后求出函數(shù)的定義域.

解答 解:(1)$cosθ=\frac{{\sqrt{2}}}{3}$,所以$\frac{{sin(θ-5π)cos(θ-\frac{π}{2})cos(8π-θ)}}{{sin(θ-\frac{3π}{2})sin(-θ-4π)}}$
=$\frac{(-sinθ)sinθcosθ}{cosθ(-sinθ)}$
=$sinθ=±\sqrt{1-{cos}^{2}θ}=±\frac{\sqrt{7}}{3}$
(2)由題意可知:$\left\{\begin{array}{l}cosx>\frac{1}{2}\\ 49-{x^2}≥0\end{array}\right.$,
解得:$\left\{{\begin{array}{l}{2kπ-\frac{π}{3}<x<2kπ+\frac{π}{3},k∈Z}\\{-7≤x≤7}\end{array}}\right.$,
得:$-7≤x<-\frac{5π}{3}$或$-\frac{π}{3}<x<\frac{π}{3}$或$\frac{5π}{3}<x≤7$.
故函數(shù)的定義域為$\{x|-7≤x<-\frac{5π}{3}或-\frac{π}{3}<x<\frac{π}{3}或\frac{5π}{3}<x≤7\}$.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,函數(shù)的定義域的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)數(shù)f(log2x)的定義域是(2,4),則函數(shù)$f({\frac{x}{2}})$的定義域是(  )
A.(2,4)B.(2,8)C.(8,32)D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正方體ABCD-A1B1C1D1的棱長為2,E為DD1的中點(diǎn),
(1)求證:BD1∥平面ACE;
(2)求△ACE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線y2=4x上的兩點(diǎn)A,B滿足|AB|=6,則弦AB中點(diǎn)到y(tǒng)軸的最小距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=2sin(2x+\frac{π}{3})$的圖象( 。
A.關(guān)于原點(diǎn)對稱B.關(guān)于點(diǎn)($\frac{π}{6}$,0)對稱
C.關(guān)于y軸對稱D.關(guān)于直線$x=\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.有一列球體,半徑組成以1為首項,$\frac{1}{2}$為公比的等比數(shù)列,體積分別記為V1,V2,…,Vn,…,則$\underset{lim}{n→∞}$(V1+V2+…Vn)=$\frac{32}{21}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|(x+1)(x-2)≤0},B={x|-2<x<2},則A∩B=( 。
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|-1<x<2}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=-cos2x+$\sqrt{3}$cosx+$\frac{5}{4}$,則( 。
A.最大值是$\frac{5}{4}$,最小值是1B.最大值是1,最小值是$\frac{1}{4}$-$\sqrt{3}$
C.最大值是2,最小值是$\frac{1}{4}$-$\sqrt{3}$D.最大值是2,最小值是$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三個球的表面積S1,S2,S3,滿足$\sqrt{{S}_{1}}$+$\sqrt{{S}_{2}}$=2$\sqrt{{S}_{3}}$,則它們的體積V1,V2,V3滿足的等量關(guān)系是$\root{3}{{V}_{1}}$+$\root{3}{{V}_{2}}$=2$\root{3}{{V}_{3}}$.

查看答案和解析>>

同步練習(xí)冊答案