19.彭州中學計劃給新高一某班安排一張課表,課表含語文、數(shù)學、外語、物理、化學、生物各一節(jié),共6節(jié)課,要求語文、外語排在前三節(jié),生物排在最后兩節(jié),物理、化學不相鄰,則不同的排法共有( 。
A.40種B.48種C.52種D.60種

分析 由題意可以分四類,根據(jù)分類計數(shù)原理可得.

解答 解:第一類,語文和外語排在第一或第三節(jié)排,物理或化學排在第二節(jié),生物排在最后兩節(jié),故有A22A21A21A22=16種,
第二類,語文和外語排在第一或第三節(jié)排,數(shù)學排在第二節(jié),則生物排在第五節(jié),故有A22A22=4種,
第三類,語文和外語排在第二或第三節(jié)排,物理或化學排在第一節(jié),生物排在最后兩節(jié),故有A22A21A21A22=16種,
第四類,語文和外語排在第二或第三節(jié)排,數(shù)學排在第一節(jié),則生物排在第五節(jié),故有A22A22=4種,
根據(jù)分類計數(shù)原理,共有16+416+4=40種,
故選:A.

點評 本題考查了分類計數(shù)原理,關鍵是分類,以及特殊元素特殊處理,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=xlnx,g(x)=$\frac{a}{x}$(其中a∈R)
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設函數(shù)h(x)=f′(x)+g(x)-1,試確定h(x)的單調(diào)區(qū)間及最值;
(Ⅲ)求證:對于任意的正整數(shù)n,均有e${\;}^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{n}}$≥$\frac{{e}^{n}}{n!}$成立.(注:e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設f(x)是定義在R上的周期為3的函數(shù),右圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2015)+f(2016)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某校100名學生數(shù)學競賽成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100],則該次數(shù)學成績在[50,60)內(nèi)的人數(shù)為( 。
A.20B.15C.10D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,a1=1,an≠0,anan+1=4Sn-1.
(Ⅰ)求{an}的通項公式;
(Ⅱ)證明:$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在四棱錐A-CDEF中,四邊形CDFE為直角梯形,CE∥DF,EF⊥FD,AF⊥平面CEFD,P為AD中點,EC=$\frac{1}{2}$FD.
(Ⅰ)求證:CP∥平面AEF;
(Ⅱ)設EF=2,AF=3,F(xiàn)D=4,求點F到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=(x2+ax)ex的兩個極值為x1,x1,且x1+x1=-2-$\sqrt{5}$.
(1)求x1,x1的值;
(2)若f(x)在(c-1,c)(其中c<-1)上是單調(diào)函數(shù),求c的取值范圍;
(3)當m≤-e,求證:[f(x)+2ex]•[(x-2)ex-m+1]>$\frac{3}{4}$ex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設a,b是關于t的方程t2cosθ+t sinθ=0的兩個不等實數(shù)根,則過A(a,a2),B(b,b2)兩點的直線與雙曲線$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1的公共點的個數(shù)為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=x-ex的增區(qū)間為( 。
A.(1,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,1)

查看答案和解析>>

同步練習冊答案