7.直線(xiàn)mx+y-m+2=0恒過(guò)定點(diǎn)(  )
A.(1,-1)B.(1,2)C.(1,-2)D.(1,1)

分析 直接利用直線(xiàn)系方程求解即可.

解答 解:直線(xiàn)mx+y-m+2=0,化為:m(x-1)+y+2=0,可知直線(xiàn)經(jīng)過(guò)(1,-2).
故選:C.

點(diǎn)評(píng) 本題考查直線(xiàn)系經(jīng)過(guò)定點(diǎn),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知平面α⊥平面β,α∩β=b,a?α,則“a⊥b”是“a⊥β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某地區(qū)以“綠色出行”為宗旨開(kāi)展“共享單車(chē)”業(yè)務(wù).該地區(qū)某高級(jí)中學(xué)一興趣小組由9名高二級(jí)學(xué)生和6名高一級(jí)學(xué)生組成,現(xiàn)采用分層抽樣的方法抽取5人,組成一個(gè)體驗(yàn)小組去市場(chǎng)體驗(yàn)“共享單車(chē)”的使用.問(wèn):
(Ⅰ)應(yīng)從該興趣小組中抽取高一級(jí)和高二級(jí)的學(xué)生各多少人;
(Ⅱ)已知該地區(qū)有X,Y兩種型號(hào)的“共享單車(chē)”,在市場(chǎng)體驗(yàn)中,該體驗(yàn)小組的高二級(jí)學(xué)生都租X型車(chē),高一級(jí)學(xué)生都租Y型車(chē).如果從組內(nèi)隨機(jī)抽取2人,求抽取的2人中至少有1人在市場(chǎng)體驗(yàn)過(guò)程中租X型車(chē)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.一名工人維護(hù)3臺(tái)獨(dú)立的游戲機(jī),一天內(nèi)3臺(tái)游戲機(jī)需要維護(hù)的概率分別為0.9、0.8和0.75,則一天內(nèi)至少有一臺(tái)游戲機(jī)不需要維護(hù)的概率為(  )
A.0.995B.0.54C.0.46D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.命題“?x∈R,2x≥0”的否定是?x∈R,2x<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若?x0∈[1,e],使得x0+$\frac{1+a}{{x}_{0}}$≤alnx0成立,則正數(shù)a的最小值為( 。
A.$\frac{{e}^{2}-1}{e+1}$B.$\frac{{e}^{2}+1}{e-1}$C.$\frac{e+1}{e-1}$D.$\frac{e-1}{e+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的是( 。
A.y=x3B.y=ln|x|C.y=sinxD.$y=\frac{1}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知關(guān)于x的方程|x|-2alog2(|x|+2)+a2=3有唯一實(shí)數(shù)解,則實(shí)數(shù)a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,所有棱長(zhǎng)都相等的直四棱柱ABCD-A′B′C′D′中B′D′中點(diǎn)為E′.
(1)求證:AE′∥平面BC′D;
(2)求證:BD⊥AE′.

查看答案和解析>>

同步練習(xí)冊(cè)答案