16.如果二次函數(shù)f(x)=5x2+mx+4在區(qū)間(-∞,-1]上是減函數(shù),在區(qū)間[-1,+∞)上是增函數(shù),則f(1)=( 。
A.10B.19C.-1D.-10

分析 若二次函數(shù)f(x)=5x2+mx+4在區(qū)間(-∞,-1]上是減函數(shù),在區(qū)間[-1,+∞)上是增函數(shù),則函數(shù)圖象關(guān)于直線x=-1對稱,即$-\frac{m}{10}$=-1,解得函數(shù)解析式,將x=1代入可得答案.

解答 解:若二次函數(shù)f(x)=5x2+mx+4在區(qū)間(-∞,-1]上是減函數(shù),在區(qū)間[-1,+∞)上是增函數(shù),
則函數(shù)圖象關(guān)于直線x=-1對稱,
即$-\frac{m}{10}$=-1,
解得m=10,
∴f(x)=5x2+10x+4,
∴f(1)=19,
故選:B.

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.命題“?∈R,x2+2x+5=0”的否定是?x∈R,x2+2x+5≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)-cos2x-$\sqrt{3}$.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在[-$\frac{π}{12}$,$\frac{25}{36}$π]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知點A(1,$\sqrt{2}$)在橢圓E:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1上,若斜率為$\sqrt{2}$的直線l與橢圓E交于B,C兩點,當△ABC的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當年產(chǎn)量不足80千件時,C(x)=$\frac{1}{3}$x2+10x(萬元);當年產(chǎn)量不小于80千件時C(x)=51x+$\frac{100000}{x}$-1450(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫出年利潤L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)y=$\sqrt{\frac{1}{2x-3}}$的定義域為($\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.定義一種運算$a?b=\left\{\begin{array}{l}a,a≤b\\ b,a>b\end{array}\right.$令f(x)=sinx?cosx(x∈R),則函數(shù)f(x)的最大值是( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.0D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差s${\;}_{甲}^{2}$和s${\;}_{乙}^{2}$,并由此分析兩組技工的加工水平;
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢測,若兩人加工的合格零件個數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}-2ax+3)$,若函數(shù)的值域為R,則常數(shù)a的取值范圍是a$≥\sqrt{3}$或a$≤-\sqrt{3}$.

查看答案和解析>>

同步練習冊答案