【題目】如圖,橢圓C:(),,分別是橢圓C的左,右焦點,點D在橢圓上,且,,的面積為.
(1)求橢圓C的方程;
(2)過的直線l與橢圓C交于M,N兩點,在x軸上是否存在點A,使為常數(shù)?若存在,求出點A的坐標(biāo)和這個常數(shù);若不存在,請說明理由
【答案】(1)(2),常數(shù)為.
【解析】
(1)根據(jù)線段比例關(guān)系及面積,集合橢圓中關(guān)系,可得方程組,解方程即可求得橢圓的標(biāo)準(zhǔn)方程.
(2)假設(shè)存在點滿足為常數(shù).當(dāng)斜率存在時,設(shè)出直線方程,并聯(lián)立橢圓方程,由韋達(dá)定理表示出,進(jìn)而表示出.根據(jù)平面向量數(shù)量積的坐標(biāo)運算,結(jié)合系數(shù)比相同時為常數(shù),即可求得的值,進(jìn)而確定的值;當(dāng)斜率不存在時,易得兩個交點坐標(biāo),即可確定取的值時的值是否與斜率存在時的一致.
(1)橢圓C:(),,分別是橢圓C的左,右焦點,點在橢圓上,且,.
則點的坐標(biāo)為,().代入橢圓方程可得,
解得.
又因為,的面積為.
所以 ,解得
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)假設(shè)在軸上存在點A,使為常數(shù),設(shè).
當(dāng)直線的斜率存在時,直線過,設(shè)..
則,化簡可得,
所以.
所以,
則
,
因為為常數(shù),
所以,解得,
此時
當(dāng)直線的斜率不存在時,直線與橢圓的兩個交點坐標(biāo)分別為.
則
所以
當(dāng)時,.
綜上可知,在軸上存在點,使得為常數(shù),該常數(shù)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同而顏色互不相同的小球若干個, 其中標(biāo)號為0的小球1個, 標(biāo)號為1的小球1個, 標(biāo)號為2的小球2個, 從袋子中不放回地隨機(jī)抽取2個小球, 記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.
(1) 記事件表示“”, 求事件的概率;
(2) 在區(qū)間內(nèi)任取2個實數(shù), 記的最大值為,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線:,(為參數(shù)),將曲線上的所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。
(1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線交于不同的兩點A,B,點M為拋物線的焦點,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于和,為棱上的點,,.
(1)若為棱的中點,求證://平面;
(2)當(dāng)時,求平面與平面所成的銳二面角的余弦值;
(3)在第(2)問條件下,設(shè)點是線段上的動點,與平面所成的角為,求當(dāng)取最大值時點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一商場對每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計對比,得到如下表格:
人數(shù) | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件數(shù) | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答題卡給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖,并由散點圖判斷銷售件數(shù)與進(jìn)店人數(shù)是否線性相關(guān)?(給出判斷即可,不必說明理由);
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測進(jìn)店人數(shù)為80時,商品銷售的件數(shù)(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):,,,,,)
參考公式:,,其中,為數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱中,側(cè)棱底面,平面,,,,,為棱的中點.
(1)證明:;
(2)求二面角的平面角的正弦值;
(3)設(shè)點在線段上,且直線與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的邊長為1的正方形沿軸滾動,點恰好經(jīng)過原點.設(shè)頂點的軌跡方程是,則對函數(shù)有下列判斷:①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間
(2)當(dāng)時,求函數(shù)在上的最大值
(3)當(dāng)時,又設(shè)函數(shù),求證:當(dāng),且時,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com