1.某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.128B.$\frac{128}{3}$C.$\frac{64}{3}$D.$\frac{32}{3}$

分析 幾何體為直三棱柱切去一個小三棱錐得到的,使用作差法求出其體積.

解答 解:由三視圖可知幾何體為直三棱柱ABC-A′B′C′切去三棱錐C′-CA′B′剩余的部分
其中直三棱柱的底面ABC是直角三角形,AC⊥BC,AC=BC=CC′=4.
∴幾何體的體積V=$\frac{1}{2}×4×4×4-\frac{1}{3}×\frac{1}{2}×4×4×4$=$\frac{64}{3}$.
故選C.

點評 本題考查了常見幾何體的三視圖和體積計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.在某校統(tǒng)考中,甲、乙兩班數(shù)學學科前10名的成績如表:
(I)若已知甲班10位同學數(shù)學成績的中位數(shù)為125,乙班10位同學數(shù)學成績的平均分為130,求x,y的值;
(Ⅱ)設定分數(shù)在135分之上的學生為數(shù)學尖優(yōu)生,從甲、乙兩班的所有數(shù)學尖優(yōu)生中任兩人,求兩人在同一班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.若x>0,求函數(shù)y=x+$\frac{4}{x}$的最小值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.判斷直線l1:x-2y+1=0與直線l2:2x-2y+3=0的位置關系,如果相交,求出交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1有( 。
A.相同短軸B.相同長軸C.相同離心率D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知復數(shù)z=m2-1+(m+1)i(其中m∈R,i是虛數(shù)單位)是純虛數(shù),則復數(shù)m+i的共軛復數(shù)是1-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1、F2,在雙曲線C上存在點P,滿足△PF1F2的周長等于雙曲線C的實軸長的3倍,則雙曲線C的離心率的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.(0,$\frac{3}{2}$)C.(1,$\frac{5}{2}$)D.(0,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤2}\\{2x+y≥0}\end{array}\right.$表示的平面區(qū)域的面積是$\frac{4}{3}$,若函數(shù)y=|2x+m|與該區(qū)域有公共點,則實數(shù)m的取值范圍是[-2,0]∪[2,8].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知四邊形ABCD的對角線相交于一點,$\overrightarrow{AC}$=(1,$\sqrt{3}$),$\overrightarrow{BD}$=($-\sqrt{3}$,1),則$\overrightarrow{AB}$$•\overrightarrow{CD}$的最小值是(  )
A.2B.4C.-2D.-4

查看答案和解析>>

同步練習冊答案