【題目】已知是方程的兩根,數(shù)列是遞增的等差數(shù)列,數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前和.
【答案】(1),(2).
【解析】
(1)由題意得出,解出方程得出、的值,然后列首項與公差的方程組,求出這兩個量的值,再利用等差數(shù)列的通項公式可得出數(shù)列的通項公式,令,由可求出的值,然后令,由得出將兩式相減可得出數(shù)列為等比數(shù)列,求出該數(shù)列的公比,可得出數(shù)列的通項公式;
(2)求出數(shù)列的通項公式,然后利用錯位相減法求出數(shù)列的前項和.
(1)解方程,可得或9
、是方程的兩根,數(shù)列是遞增的等差數(shù)列,
,,設(shè)公差為,則,解得,.
,
對于數(shù)列,.
當(dāng)時,,解得;
當(dāng)時,,化為,即,
因此數(shù)列是等比數(shù)列,;
(2),
數(shù)列的前項和,
,
兩式相減可得
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測點A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時間比在B地晚秒. A地測得該儀器彈至最高點H時的仰角為30°.
(1)求A、C兩地的距離;
(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,討論的單調(diào)性;
(2)設(shè),當(dāng)時,若對任意,存在使,求實數(shù)取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),g(x)滿足關(guān)系g(x)=f(x)f(x+α),其中α是常數(shù).
(1)設(shè)f(x)=cosx+sinx,,求g(x)的解析式;
(2)設(shè)計一個函數(shù)f(x)及一個α的值,使得;
(3)當(dāng)f(x)=|sinx|+cosx,時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然對數(shù)的底數(shù).(13分)
(Ⅰ)求曲線y=f(x)在點(π,f(π))處的切線方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),討論h(x)的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),當(dāng)x>0時,解析式為f(x)=.
(1)求f(x)在R上的解析式;
(2)用定義證明f(x)在(0,+∞)上為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中Ai的橫、縱坐標(biāo)分別為第i名工人上午的工作時間和加工的零件數(shù),點Bi的橫、縱坐標(biāo)分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1 , Q2 , Q3中最大的是 .
②記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1 , p2 , p3中最大的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(1)班參加校生物競賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com