1.下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是$\{α|α=\frac{kπ}{2},k∈Z\}$;
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④把函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象;
⑤角θ為第一象限角的充要條件是sinθ>0
其中,真命題的編號(hào)是①④.(寫(xiě)出所有真命題的編號(hào))

分析 ①化簡(jiǎn)y=sin4x-cos4x=-cos2x可求其周期; 
②k為偶數(shù)時(shí),終邊在x軸上;
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象僅有一個(gè)公共點(diǎn) 
④把函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象;
⑤sinθ>0時(shí),角θ可為軸線角(如900).

解答 解:對(duì)于①,∵y=sin4x-cos4x=sin2x-cos2x=-cos2x,∴最小正周期是π,故①正確;  
對(duì)于 ②,k為偶數(shù)時(shí),終邊在x軸上,故②錯(cuò)誤;
對(duì)于③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象僅有一個(gè)公共點(diǎn),故③錯(cuò)誤;
 對(duì)于 ④把函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象,故④正確;
對(duì)于⑤sinθ>0時(shí),角θ可為軸線角(如900),故⑤錯(cuò)誤,
故答案為:①④.

點(diǎn)評(píng) 本題考查了三角函數(shù)的定義、周期、圖象平移、性質(zhì)等基礎(chǔ)知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=nan-n(n-1).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別求出an的表達(dá)式;
(2)設(shè)數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和為Pn,求證:Pn<$\frac{1}{2}$;
(3)設(shè)Cn=$\frac{{a}_{n}}{{2}^{n}}$,Tn=C1+C2+…+Cn,試比較Tn與$\frac{n}{{{2^{n-1}}}}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比為q,前n項(xiàng)和為Sn,若對(duì)?n∈N*,有$\frac{{S}_{2n}}{{S}_{n}}$<5,則q的取值范圍是(  )
A.(0,1]B.($\frac{1}{2}$,2)C.[1,$\sqrt{2}$)D.($\frac{\sqrt{2}}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知定義在R上的奇函數(shù)f(x)滿足f(x+3)=-f(x),若f(1)>3,$f(11)=\frac{2a-1}{3-a}$,則實(shí)數(shù)a的取值范圍為(  )
A.3<a<8B.a<3或a>8C.2<a<3D.a<2或a>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$,則f(lg3)+f(lg$\frac{1}{3}$)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a>0,b>0,且a2+b2=18.
(1)若a+b≤m恒成立,求m的最小值;
(2)若2|x-1|+|x|≥a+b對(duì)任意的a,b恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在銳角△ABC中,角A,B所對(duì)的邊長(zhǎng)分別為a,b,且$2asinB=\sqrt{3}b$.
(Ⅰ)求角A的大;
(Ⅱ)若a=3,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=lnx+1.
(1)①證明:當(dāng)x>0時(shí),f(x)≤x(當(dāng)且僅當(dāng)x=1時(shí)取得等號(hào));
②當(dāng)n≥2,n∈N*時(shí),證明:$\sum_{k=1}^n{\frac{lnk}{k+1}}<\frac{n(n-1)}{4}$;
(2)設(shè)$g(x)=ax+(a-1)•\frac{1}{x}-lnx-1$,若g(x)≥0對(duì)x>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=sin$({\frac{3}{2}x+\frac{π}{4}})$的圖象相鄰的兩個(gè)零點(diǎn)之間的距離是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.

查看答案和解析>>

同步練習(xí)冊(cè)答案