3.函數(shù)y=x+$\frac{4}{x}$的單調遞增區(qū)間為( 。
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0),(0,2)D.(-∞,-2),(2,+∞)

分析 l利用函數(shù)的單調增區(qū)間即為導數(shù)大于0的區(qū)間,因此求出導數(shù)y′>0的解集即可.

解答 解:對函數(shù)y=x+$\frac{4}{x}$求導數(shù),得:
y′=1-$\frac{4}{{x}^{2}}$;
令y′>0,得1-$\frac{4}{{x}^{2}}$>0,
解得x<-2或x>2;
所以函數(shù)y的增區(qū)間為(-∞,-2)和(2,+∞).
故選:D.

點評 本題考查了函數(shù)的單調性和單調區(qū)間的求法問題,導數(shù)是求單調性的一個工具,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.現(xiàn)有4名男生、3名女生站成一排照相.
(1)兩端是女生,有多少種不同的站法?
(2)任意兩名女生不相鄰,有多少種不同的站法?
(3)女生必須在一起,有多少種不同的站法?
(4)女生甲要在女生乙的右方(可以不相鄰),有多少種不同的站法?
(5)女生甲不在左端,女生乙不在右端,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$+$\overrightarrow b}$|=$\sqrt{10}$,|${\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{6}$,則$\overrightarrow a$•$\overrightarrow b$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(n)=sin$\frac{nπ}{6}$(n∈N*),則f(1)+f(2)+…+f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在區(qū)間(0,1)內任取兩個數(shù),則這兩個數(shù)的和小于$\frac{6}{5}$的概率為( 。
A.$\frac{18}{25}$B.$\frac{17}{25}$C.$\frac{16}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.觀察如圖算式:
23=3+5;
33=7+9+11;
43=13+15+17+19;
53=21+23+25+27+29

203=a1+a2+a3+…,其中a1<a2<a3<…,那么a1=381.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.命題p:“方程$\frac{x^2}{m}$+$\frac{y^2}{2}$=1是焦點在x軸上的橢圓”;命題q:“已知函數(shù)f(x)=$\frac{4}{3}$x3-2mx2+(4m-3)x,方程f'(x)=0沒有實數(shù)根”.若“p且q”是假命題,“p或q”是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若一個三角形的平行投影仍是三角形,則下列命題:
①三角形的高線的平行投影,一定是這個三角形的平行投影的高線;
②三角形的中線的平行投影,一定是這個三角形的平行投影的中線;
③三角形的角平分線的平行投影,一定是這個三角形的平行投影的角平分線;
④三角形的中位線的平行投影,一定是這個三角形的平行投影的中位線.
其中正確的命題有( 。
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.角α終邊上有一點($\sqrt{3}$,1),若α>0,則α的最小值為$\frac{π}{6}$.

查看答案和解析>>

同步練習冊答案