6.若tanθ=-$\frac{1}{3}$,則cos2θ=$\frac{4}{5}$.

分析 利用cos2θ=$\frac{co{s}^{2}θ-si{n}^{2}θ}{co{s}^{2}θ+si{n}^{2}θ}$=$\frac{1-ta{n}^{2}θ}{ta{n}^{2}+1}$,代入計(jì)算可得結(jié)論.

解答 解:∵tanθ=-$\frac{1}{3}$,
∴cos2θ=$\frac{co{s}^{2}θ-si{n}^{2}θ}{co{s}^{2}θ+si{n}^{2}θ}$=$\frac{1-ta{n}^{2}θ}{ta{n}^{2}+1}$=$\frac{1-\frac{1}{9}}{\frac{1}{9}+1}$=$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查二倍角的余弦公式,考查同角三角函數(shù)關(guān)系的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題P:方程x2+mx+1=0有兩個(gè)不等的實(shí)數(shù)根,命題q:方程4x2+4(m-2)x+1=0無實(shí)數(shù)根.若p∧q為假,若p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,直線x+(m+1)y=2-m與直線mx+2y=-8互相垂直,則實(shí)數(shù)m=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.?dāng)?shù)列7,9,11,13,…,2n-1中項(xiàng)的個(gè)數(shù)為n-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\frac{1}{1+\root{4}{3}}$+$\frac{1}{1-\root{4}{3}}$+$\frac{2}{1+\sqrt{3}}$的值是( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)M(m,m2),N(n,n2),其中m,n是關(guān)于x的方程sinθ•x2+cosθ•x-1=0(θ∈R)的兩個(gè)不等實(shí)根.若圓O:x2+y2=1上的點(diǎn)到直線MN的最大距離為d,且正實(shí)數(shù)a,b,c滿足abc+b2+c2=4d,則log4a+log2b+log2c的最大值是( 。
A.$\frac{5}{2}$B.4C.2$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=e-5x+2的導(dǎo)數(shù)是-5e-5x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,A=60°,且最大邊長和最小邊長是方程x2-7x+11=0的兩個(gè)根,則第三邊的長為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某工廠生產(chǎn)A,B,C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,若樣本中A種型號(hào)產(chǎn)品有12件,那么樣本的容量n=60.

查看答案和解析>>

同步練習(xí)冊(cè)答案