【題目】設(shè)數(shù)列{an}首項a1=2,前n項和為Sn , 且滿足2an+1+Sn=3(n∈N*),則滿足 的所有n的和為

【答案】9
【解析】解:由2an+1+Sn=3(n∈N*),
∴2an+2+Sn+1=3,
兩式相減得2an+2+Sn+1﹣2an+1﹣Sn=0,
即2an+2+an+1﹣2an+1=0,
則2an+2=an+1 ,
當(dāng)n=1時,2a2+a1=3,
則a2= ,滿足2a2=a1 ,
即2an+1=an , 則 = ,即數(shù)列{an}是公比q= ,首項a1=2的等比數(shù)列,
則數(shù)列{an}前n項和為Sn= =4﹣4( n ,
= =1+( n ,
,即 <1+( n ,
<( n ,
則15<2n<33,
則n=4或5,
則4+5=9,
所以答案是:9.
【考點精析】通過靈活運(yùn)用數(shù)列的前n項和,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】家用電器一件,現(xiàn)價2000元,實行分期付款,每期付款數(shù)相同,每期為一月,購買后一個月付款一次,共付12次,即購買后一年付清,如果按月利率8‰,每月復(fù)利一次計算,那么每期應(yīng)付款多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點 P 與定點的距離和它到定直線 x 4 的距離的比是1: 2 ,記動點 P 的軌跡為曲線 E.

(1)求曲線 E 的方程;

(2)設(shè) A 是曲線 E 上的一個點,直線 AF 交曲線 E 于另一點 B,以 AB 為邊作一個平行四邊形,頂點 A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說明理由;

(3)當(dāng)平行四邊形 ABCD 的面積取到最大值時,判斷它的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,是自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2),當(dāng)時,求函數(shù)的最大值;

(3),且,比較:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,直線l經(jīng)過點P(﹣1,0),其傾斜角為α,在以原點O為極點,x軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長度單位),曲線C的極坐標(biāo)方程為ρ2﹣6ρcosθ+1=0. (Ⅰ)若直線l與曲線C有公共點,求α的取值范圍;
(Ⅱ)設(shè)M(x,y)為曲線C上任意一點,求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足4nSn=(n+1)2an(n∈N*).a(chǎn)1=1
(Ⅰ)求an;
(Ⅱ)設(shè)bn= ,數(shù)列{bn}的前n項和為Tn , 求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個棱錐的三視圖如圖,則該棱錐的全面積為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點為 ,右頂點為,上頂點為, 軸垂直,.

(1)求橢圓的方程;

(2)過點且不垂直與坐標(biāo)軸的直線與橢圓交于 兩點,已知點,當(dāng)時,求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= .

(1)當(dāng)a>0時,解關(guān)于x的不等式f(x)<0;

(2)若當(dāng)a>0時,f(x)<0在x [1,2]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案