【題目】如圖,橢圓的左、右焦點為, 右頂點為,上頂點為, 軸垂直,.

(1)求橢圓的方程;

(2)過點且不垂直與坐標軸的直線與橢圓交于, 兩點,已知點,時,求滿足的直線的斜率的取值范圍.

【答案】(1) .(2) .

【解析】試題分析:1)由兩條直線平行可得,由點在曲線上可得其縱坐標為,由兩者相等可得,結合,解出方程組即可;(2設直線的方程為: , ,與橢圓方程聯(lián)立利用根與系數(shù)的關系得到線段的垂直平分線方程為,求出與軸的交,由交點橫坐標列出不等式,解出即可得出結果.

試題解析:(1),由軸, , ,,

又由,

, ,

, ,橢圓方程為.

(2), ,直線的方程為 ,

聯(lián)立,

設線段的垂直平分線方程為: .

,

由題意知, 為線段的垂直平分線與軸的交點所以,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】公比為4的等比數(shù)列{bn}中,若Tn是數(shù)列{bn}的前n項積,則有仍成等比數(shù)列,且公比為4100;類比上述結論,在公差為3的等差數(shù)列{an}中,若Sn{an}的前n項和,則有________也成等差數(shù)列,該等差數(shù)列的公差為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}首項a1=2,前n項和為Sn , 且滿足2an+1+Sn=3(n∈N*),則滿足 的所有n的和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是___________

用一個平面截一個球,得到的截面是一個圓;

圓臺的任意兩條母線延長后一定交于一點;

有一個面為多邊形,其余各面都是三角形的幾何體叫做棱錐;

若棱錐的側棱長與底面多邊形的邊長相等,則該棱錐不可能是正六棱錐;

用斜二測畫法作出正三角形的直觀圖,則該直觀圖面積為原三角形面積的一半.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調區(qū)間與極值

2)若fx≥gx恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內該廠可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品中隨機抽取200件測量它們的直徑,得到如圖所示的頻率分布直方圖.

1的值,并估計該廠生產(chǎn)一件產(chǎn)品的平均利潤;

2現(xiàn)用分層抽樣法從直徑位于區(qū)間內的產(chǎn)品中隨機抽取一個容量為5的樣本,從樣本中隨機抽取兩件產(chǎn)品進行檢測,求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內的槪率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+21nx.
(1)求f(x)的單調區(qū)間.
(2)若f(x)在(0,1]上的最大值是﹣2,求a的值.
(3)記g(x)=f(x)+(a﹣1)lnx+1,當a≤﹣2時,若對任意x1 , x2∈(0,+∞),總有|g(x1)﹣g(x2)|≥k|x1﹣x2|成立,試求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 函數(shù)g(x)=2﹣f(x),若函數(shù)y=f(x)﹣g(x)恰有4個零點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿足 = (1<λ≤a,1<μ≤b)的點P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則4a+b的最小值為 (
A.5
B.4
C.9
D.5+4

查看答案和解析>>

同步練習冊答案