7.在直角坐標(biāo)系xOy中,角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊在x軸的正半軸上.
(1)當(dāng)角α的終邊為射線l:y=2$\sqrt{2}$x (x≥0)時(shí),求cos(α+$\frac{π}{6}$)的值;
(2)已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,試求$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范圍.

分析 (1)利用任意角的三角函數(shù)的定義求得sinα 和cosα 的值,再利用兩角和差的三角公式求得 cos(α+$\frac{π}{6}$)的值.
(2)利用三角恒等變換化簡(jiǎn)要求式子的解析式,再利用正弦函數(shù)的定義域和值域,求得它的值域.

解答 解:(1)當(dāng)角α的終邊為射線l:y=2$\sqrt{2}$x (x≥0)時(shí),
在射線l上取點(diǎn)A(1,2$\sqrt{2}$),則OA=3,
由三角函數(shù)的定義可得sinα=$\frac{2\sqrt{2}}{3}$,cosα=$\frac{1}{3}$,
∴cos(α+$\frac{π}{6}$)=cosαcos$\frac{π}{6}$-sinαsin$\frac{π}{6}$=$\frac{1}{3}$$•\frac{\sqrt{3}}{2}$-$\frac{2\sqrt{2}}{3}•\frac{1}{2}$=$\frac{\sqrt{3}-2\sqrt{2}}{6}$.
(2)∵已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,∴2α+$\frac{π}{6}$∈[$\frac{π}{2}$,$\frac{5π}{3}$],
$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$=$\frac{3}{2}sin2α$+$\frac{\sqrt{3}}{2}$cos2α=$\sqrt{3}$sin(2α+$\frac{π}{6}$),
∴sin(2α+$\frac{π}{6}$)∈[-1,1],∴$\sqrt{3}$sin(2α+$\frac{π}{6}$)∈[-$\sqrt{3}$,$\sqrt{3}$].
即要求的$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范圍為[-$\sqrt{3}$,$\sqrt{3}$].

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,兩角和差的三角公式,三角恒等變換,正弦函數(shù)的定義域和值域,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知某幾何體的三視圖如圖所示,則該幾何體的外接球表面積為( 。
A.$\frac{8π}{3}$B.32πC.D.8$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下面幾種推理過(guò)程是演繹推理的是( 。
A.某校高三8個(gè)班,1班51人,2班53人,3班52人,由此推測(cè)各班人數(shù)都超過(guò)50人
B.由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)
C.平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分
D.在數(shù)列{an}中,${a_1}=1,{a_n}=\frac{1}{2}({{a_{n-1}}+\frac{1}{{{a_{n-1}}}}})({n≥2})$,通過(guò)計(jì)算a2,a3,a4推理出{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則A,ω的值分別為( 。
A.2,2B.2,1C.4,2D.2,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知A(1,-2),B(4,0),P(a,1),N(a+1,1),若四邊形PABN的周長(zhǎng)最小,則△APN的外接圓的圓心坐標(biāo)是$(3,-\frac{9}{8})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.過(guò)點(diǎn)A(4,1)的圓C與直線x-y-1=0相切于點(diǎn)B(2,1),求圓C的方程,并確定圓心坐標(biāo)和半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,∠B=45°,$b=\sqrt{10},sinC=\frac{{\sqrt{5}}}{5}$.
(1)求邊長(zhǎng)a;  
(2)設(shè)AB中點(diǎn)為D,求中線CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2sin(\frac{πx}{3}+\frac{5}{6}π),-3≤x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四個(gè)不同解x1,x2,x3,x4,且x1<x2<x3<x4,則x3(x1+x2)+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$的取值范圍為( 。
A.[1,$\frac{7}{2}$)B.[1,$\frac{7}{2}$]C.[-1,$\frac{7}{2}$]D.[-1,$\frac{7}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,過(guò)上頂點(diǎn)和左焦點(diǎn)的直線的傾斜角為$\frac{π}{6}$,直線l過(guò)點(diǎn)E(-1,0)且與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)△AOB的面積是否有最大值?若有,求出此最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案