16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2sin(\frac{πx}{3}+\frac{5}{6}π),-3≤x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四個(gè)不同解x1,x2,x3,x4,且x1<x2<x3<x4,則x3(x1+x2)+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$的取值范圍為(  )
A.[1,$\frac{7}{2}$)B.[1,$\frac{7}{2}$]C.[-1,$\frac{7}{2}$]D.[-1,$\frac{7}{2}$)

分析 作出函數(shù)f(x),得到x1,x2關(guān)于x=-1對(duì)稱,x3x4=1;化簡(jiǎn)條件,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作函數(shù)f(x)的圖象如右,
∵方程f(x)=a有四個(gè)不同的解x1,x2,x3,x4,且x1<x2<x3<x4,
∴x1,x2關(guān)于x=-1對(duì)稱,即x1+x2=-2,
由|log2x|=2得x=$\frac{1}{4}$或x=4,
由|log2x|=1得x=$\frac{1}{2}$或x=2,
即$\frac{1}{4}$<x3≤$\frac{1}{2}$,2≤x4<4,
則|log2x3|=|log2x4|,
即-log2x3=log2x4
則log2x3+log2x4=0
即log2x3x4=0
則x3x4=1;
故${x_3}({{x_1}+{x_2}})+\frac{1}{{x_3^2{x_4}}}$=-2x3+$\frac{1}{{x}_{3}}$,$\frac{1}{4}$<x3≤$\frac{1}{2}$;
則函數(shù)y=-2x3+$\frac{1}{{x}_{3}}$,在$\frac{1}{4}$<x3≤$\frac{1}{2}$上為減函數(shù),
則故x3=$\frac{1}{2}$取得最大值,為y=1,
當(dāng)x3=$\frac{1}{4}$時(shí),函數(shù)取得最大值為-2×$\frac{1}{4}$+$\frac{1}{\frac{1}{4}}$=-$\frac{1}{2}$+4=$\frac{7}{2}$.
即函數(shù)取值范圍是[1,$\frac{7}{2}$).
故選:A.

點(diǎn)評(píng) 本題考查分段函數(shù)的運(yùn)用,主要考查函數(shù)的單調(diào)性的運(yùn)用,運(yùn)用數(shù)形結(jié)合的思想方法是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|y=lg(2-x)},集合B={x|$\frac{1}{4}$≤2x≤4},則A∩B=( 。
A.{x|x≥-2}B.{x|-2<x<2}C.{x|-2≤x<2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy中,角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊在x軸的正半軸上.
(1)當(dāng)角α的終邊為射線l:y=2$\sqrt{2}$x (x≥0)時(shí),求cos(α+$\frac{π}{6}$)的值;
(2)已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,試求$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如果將直線l向右平移3個(gè)單位,再向上平移2個(gè)單位后所得的直線與l重合,則該直線l的斜率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)g(x)=$\frac{1}{2}a{x^2}$-(a+1)x+lnx(a∈R,a≠0).
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[1,+∞)時(shí)恒有g(shù)(x)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,F(xiàn)1,F(xiàn)2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右兩個(gè)焦點(diǎn),|F1F2|=4,長(zhǎng)軸長(zhǎng)為6,又A,B分別是橢圓C上位于x軸上方的兩點(diǎn),且滿足$\overrightarrow{A{F_1}}$=2$\overrightarrow{B{F_2}}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求直線AF1的方程;
(Ⅲ)求平行四邊形AA1B1B的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)不等式組$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,表示的區(qū)域?yàn)镸,若直線l:y=k(x+2)上存在區(qū)域M內(nèi)的點(diǎn),則k的取值范圍是$[\frac{2}{7},\frac{22}{15}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.cos$\frac{29π}{6}$的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=$\left\{\begin{array}{l}({1-a})x+2a,x<1\\ lnx,x≥1\end{array}$的值域?yàn)镽,則a的取值范圍是-1≤a<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案