分析 根據(jù)兩點(diǎn)之間的距離公式,列出四邊形PABN的周長關(guān)于a的表達(dá)式,得到x軸上的點(diǎn)(a,0)與(1,3)和(3,1)距離之和最小時(shí),四邊形PABN的周長也最。脤ΨQ思想結(jié)合直線方程的求法,可得a值為$\frac{5}{2}$時(shí),四邊形PABN的周長最。畯亩玫絇、N的坐標(biāo),再用直線方程的一般式,求出經(jīng)過三點(diǎn)A、P、N的圓方程,從而得到圓心的坐標(biāo).
解答 解:四邊形PABN的周長為
C=|PA|+|AB|+|BN|+|NP|=$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(4-1)^{2}+(0+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$+1
=$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$+$\sqrt{13}$1,
只需求出$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$的最小值時(shí)的a值.
由于$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$=$\sqrt{(a-1)^{2}+(0-3)^{2}}$+$\sqrt{(a-3)^{2}+(0-1)^{2}}$,
表示x軸上的點(diǎn)(a,0)與(1,3)和(3,1)距離之和,只需該距離之和最小即可.
利用對稱的思想,可得該距離之和的最小值為(1,-3)與(3,1)間的距離,
且取得最小的a值為E(1,-3)與F(3,1)確定的直線與x軸交點(diǎn)的橫坐標(biāo),
∵直線EF的斜率k=$\frac{1+3}{3-1}$=2,∴直線EF方程為y+3=2(x-1),化簡得y=2x-5,
令y=0,得x=$\frac{5}{2}$,所以此時(shí)a值為$\frac{5}{2}$
由以上的討論,得四邊形PABN的周長最小時(shí),P($\frac{5}{2}$,1),N($\frac{7}{2}$,1)
設(shè)過三點(diǎn)A、P、N的圓方程為x2+y2+Dx+Ey+F=0
可得$\left\{\begin{array}{l}{1+4+D-2E+F=0}\\{\frac{25}{4}+1+\frac{5}{2}D+E+F=0}\\{\frac{49}{4}+1+\frac{7}{2}D+E+F=0}\end{array}\right.$,解之得D=-6,E=$\frac{9}{\;}$,F(xiàn)=$\frac{11}{2}$
∴過三點(diǎn)A、P、N的圓方程為x2+y2-6x+$\frac{9}{4}$y+$\frac{11}{2}$=0,可得圓心坐標(biāo)為(3,-$\frac{9}{8}$)
故答案為:(3,-$\frac{9}{8}$).
點(diǎn)評 本題以四邊形周長取最小值為載體,求經(jīng)過三點(diǎn)圓的圓心坐標(biāo),著重考查了直線的方程、圓方程求法等知識,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 65 | B. | 70 | C. | 75 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com