7.△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若△ABC為銳角三角形,且B=$\frac{π}{3}$,c=2,則邊b的取值范圍是(  )
A.($\sqrt{3}$,3)B.($\sqrt{3}$,2$\sqrt{3}}$)C.(3,2$\sqrt{3}}$)D.($\sqrt{3}$,+∞)

分析 利用正弦定理列出關(guān)系式,把c與sinB的值代入表示出b,根據(jù)C的范圍確定出sinC的范圍,即可確定出b的范圍.

解答 解:∵△ABC為銳角三角形,且B=$\frac{π}{3}$,c=2,
∴由正弦定理$\frac{sinB}$=$\frac{c}{sinC}$得:b=$\frac{csinB}{sinC}$=$\frac{\sqrt{3}}{sinC}$,
∵$\frac{π}{6}$<C<$\frac{π}{2}$,∴$\frac{1}{2}$<sinC<1,即1<$\frac{1}{sinC}$<2,
∴$\sqrt{3}$<$\frac{\sqrt{3}}{sinC}$<2$\sqrt{3}$,即$\sqrt{3}$<b<2$\sqrt{3}$,
則b的取值范圍是($\sqrt{3}$,2$\sqrt{3}$),
故選:B.

點(diǎn)評(píng) 此題考查了正弦定理,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若a,b是函數(shù)f(x)=x2-px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,-2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于9;點(diǎn)A坐標(biāo)(p,q),曲線C方程:y=$\sqrt{1-{x^2}}$,直線l過A點(diǎn),且和曲線C只有一個(gè)交點(diǎn),則直線l的斜率取值范圍為{$\frac{10-\sqrt{10}}{12}$}∪($\frac{2}{3}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=lg(x+1)+$\sqrt{3-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.[1,3]B.[-1,3]C.(1,3]D.(-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.我艦在敵島A處南偏西50°的B處,且A,B距離為12海里,發(fā)現(xiàn)敵艦正離開島沿北偏西10°的方向以每小時(shí)10海里的速度航行.若我艦要用2小時(shí)追上敵艦,則其速度大小為14海里/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+(2b-1)x+6b-a為偶函數(shù),且f(x+1)-f(x)=2x+1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(x)+λx,求函數(shù)g(x)在[0,1]內(nèi)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.用計(jì)算機(jī)隨機(jī)產(chǎn)生的有序二元數(shù)組(x,y)滿足-1≤x≤1,-1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.tan78°-tan33°tan78°-tan33°等于(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.△ABC中,∠A=$\frac{2}{3}$π,AB=2,BC=$\sqrt{6}$,D在BC邊上,AD=BD,則AD=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x<1,則$\frac{x+1}{x-1}$<2的解是{x|x<1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案