10.現(xiàn)有一個以O(shè)A、OB為半徑的扇形池塘,在OA、OB上分別取點C、D,作DE∥OA、CF∥OB分別交弧AB于點E、F,且BD=AC,現(xiàn)用漁網(wǎng)沿著DE、EO、OF、FC將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知OA=1km,∠AOB=$\frac{π}{2}$,∠EOF=θ(0<θ<$\frac{π}{2}$).
(1)若區(qū)域Ⅱ的總面積為$\frac{1}{4}k{m^2}$,求θ的值;
(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬元、40萬元、20萬元,試問:當(dāng)θ為多少時,年總收入最大?

分析 (1)推導(dǎo)出OD=OC,DE⊥OB,CF⊥OA,從而Rt△ODE≌Rt△OCF,進(jìn)而∠DOE=∠COF=$\frac{1}{2}({\frac{π}{2}-θ})$,由此得到S區(qū)域Ⅱ=$\frac{1}{2}cosθ$(0<θ<$\frac{π}{2}$),從而能求出θ.
(2)由S區(qū)域Ⅰ=$\frac{1}{2}θ$,求出S區(qū)域Ⅲ=S-S區(qū)域Ⅰ-S區(qū)域Ⅱ=$\frac{π}{4}-\frac{1}{2}θ-\frac{1}{2}$cosθ.記年總收入為y萬元,則y=5π+5θ+10cosθ(0<θ<$\frac{π}{2}$),y'=5(1-2sinθ),令y'=0,則θ=$\frac{π}{6}$.由此利用導(dǎo)數(shù)性質(zhì)求出當(dāng)θ=$\frac{π}{6}$時,年總收入最大.

解答 解:(1)∵BD=AC,OB=OA,∴OD=OC.
∵∠AOB=$\frac{π}{2}$,DE∥OA,CF∥OB,
∴DE⊥OB,CF⊥OA.
又∵OE=OF,∴Rt△ODE≌Rt△OCF.
∴∠DOE=∠COF=$\frac{1}{2}({\frac{π}{2}-θ})$,
又OC=OF•cos∠COF
∴S△COF=$\frac{1}{2}$•OC•OF•sin∠COF=$\frac{1}{4}$cosθ
∴S區(qū)域Ⅱ=$\frac{1}{2}cosθ$(0<θ<$\frac{π}{2}$).
由$\frac{1}{2}cosθ=\frac{1}{4}$,得cosθ=$\frac{1}{2}$,
∵0<θ<$\frac{π}{2}$,∴θ=$\frac{π}{3}$.
(2)∵S區(qū)域Ⅰ=$\frac{1}{2}θ$,∴S區(qū)域Ⅲ=S-S區(qū)域Ⅰ-S區(qū)域Ⅱ=$\frac{π}{4}-\frac{1}{2}θ-\frac{1}{2}$cosθ.
記年總收入為y萬元,
則y=30×$\frac{1}{2}θ+40×\frac{1}{2}$cosθ$+20×({\frac{π}{4}-\frac{1}{2}θ}$$\left.{-\frac{1}{2}cosθ})$=5π+5θ+10cosθ(0<θ<$\frac{π}{2}$),
所以y'=5(1-2sinθ),令y'=0,則θ=$\frac{π}{6}$.
當(dāng)0<θ<$\frac{π}{6}$時,y'>0;當(dāng)$\frac{π}{6}<θ<\frac{π}{2}$時,y'<0.
故當(dāng)θ=$\frac{π}{6}$時,y有最大值,即年總收入最大.

點評 本題考查扇形面積、導(dǎo)數(shù)的性質(zhì)及應(yīng)用、函數(shù)性質(zhì)、構(gòu)造法等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx+$\frac{1}{2}{x^2}$-ax(a為常數(shù))有兩個不同的極值點.
(1)求實數(shù)a的取值范圍;
(2)記f(x)的兩個不同的極值點分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|-1<x<3},N={x|x2-6x+8<0},則M∩N=( 。
A.(1,3)B.(2,3)C.(2,4)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)$f(x)=|\frac{x}{2}+\frac{1}{2a}|+|\frac{x}{2}-\frac{a}{2}|,(a>0)$.
(Ⅰ)證明:f(x)≥1;
(Ⅱ)若f(6)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m+1,-m),$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m的值為( 。
A.-1B.1C.-$\frac{1}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,若f(lnx)<f(2),則x的取值范圍是(  )
A.(0,e2B.(e-2,+∞)C.(e2,+∞)D.(e-2,e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+2≥y\\ x+2y≥4\\ y≤5-2x\end{array}\right.$則z=3x+2y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx+$\frac{ax}{x+1}$(a∈R)
(1)若函數(shù)f(x)在區(qū)間(0,4)上單調(diào)遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線y=2x相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.橢圓$\frac{{x}^{2}}{a}$+y2=1(a>1)與雙曲線$\frac{{y}^{2}}$-y2=1(b>0)有相同的焦點F1、F2,若P為兩曲線的一個交點,則△PF1F2的面積為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案