11.在下列各組向量中,可以作為基底的是(  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(3,2)B.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-2)
C.$\overrightarrow{{e}_{1}}$=(6,4),$\overrightarrow{{e}_{2}}$=(3,2)D.$\overrightarrow{{e}_{1}}$=(-2,5),$\overrightarrow{{e}_{2}}$=(2,-5)

分析 由定理知可作為平面內所有向量的一組基底的兩個向量必是不共線的,由此關系對四個選項作出判斷,得出正確選項.

解答 解:對于A:零向量與任一向量共線,因此$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$共線,不能作為基底;
B:由$\overrightarrow{{e}_{1}}$≠λ$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$不共線,可以作為基底;
C:$\overrightarrow{{e}_{1}}$=2$\overrightarrow{{e}_{2}}$,因此$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$共線,不能作為基底;
D:$\overrightarrow{{e}_{1}}$=-$\overrightarrow{{e}_{2}}$,因此$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$共線,不能作為基底;
故選:B.

點評 本題考查平面向量基本定理及其應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.極坐標系中,O為極點,點A為直線l:ρsinθ=ρcosθ+2上一點,則|OA|的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.正實數(shù)x,y滿足:x+y=xy,則x2+y2-4xy的最小值為-8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知一個球的體積為$\frac{4}{3}π$,則該球的表面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|-1<x<4},B={x|x<5},則( 。
A.A⊆BB.A?BC.B?AD.B⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知橢圓${x^2}+\frac{y^2}{4}=1$,A、B是橢圓的左右頂點,P是橢圓上不與A、B重合的一點,PA、PB的傾斜角分別為α、β,則$\frac{{cos({α-β})}}{{cos({α+β})}}$=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,a、b、c分別是角A、B、C的對邊.若$\frac{sinC}{sinA}$=2,b2-a2=3ac,則∠B=( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.某幾何體的三視圖如圖,則該幾何體的體積為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=loga(x-3)+2過定點P,且角α的終邊過點P,則sin2α+cos2α的值為( 。
A.$\frac{7}{5}$B.$\frac{6}{5}$C.4D.5

查看答案和解析>>

同步練習冊答案