A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 由$\frac{sinC}{sinA}$=2,利用正弦定理可得:c=2a,又b2-a2=3ac,可得b2=7a2.再利用余弦定理即可得出.
解答 解:在△ABC中,∵$\frac{sinC}{sinA}$=2,∴c=2a,
又b2-a2=3ac,∴b2=a2+3a×2a=7a2.
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+4{a}^{2}-7{a}^{2}}{2a×2a}$=$-\frac{1}{2}$,
∵B∈(0,180°).
則∠B=120°.
故選:C.
點(diǎn)評(píng) 本題考查了正弦定理余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(3,2) | B. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-2) | ||
C. | $\overrightarrow{{e}_{1}}$=(6,4),$\overrightarrow{{e}_{2}}$=(3,2) | D. | $\overrightarrow{{e}_{1}}$=(-2,5),$\overrightarrow{{e}_{2}}$=(2,-5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2盞 | B. | 3盞 | C. | 4盞 | D. | 7盞 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 2 | 3 | 4 |
y | 6 | 4 | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com