【題目】下列判斷正確的是( )
A.若隨機變量服從正態(tài)分布,,則;
B.已知直線平面,直線平面,則“”是“”的充分不必要條件;
C.若隨機變量服從二項分布:,則;
D.是的充分不必要條件.
【答案】ABCD
【解析】
由隨機變量ξ服從正態(tài)分布N(1,σ2),則曲線關(guān)于x=1對稱,即可判斷A;結(jié)合面面平行性質(zhì)定理,利用充分條件和必要條件的定義進行判斷.可判斷B;
運用二項分布的期望公式Eξ=np,即可判斷C;可根據(jù)充分必要條件的定義,注意m=0,即可判斷D.
A.已知隨機變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則曲線關(guān)于x=1對稱,可得P(ξ>4)=1﹣0.79=0.21,P(ξ≤﹣2)=P(ξ>4)=0.21,故A正確;
B.若α∥β,∵直線l⊥平面α,∴直線l⊥β,∵m∥β,∴l⊥m成立.
若l⊥m,當m∥β時,則l與β的位置關(guān)系不確定,∴無法得到α∥β.
∴“α∥β”是“l⊥m”的充分不必要條件.故B對;
C.由于隨機變量ξ服從二項分布:ξ~B(4,),則Eξ=4×0.25=1,故C對;
D.“am2>bm2”可推出“a>b”,但“a>b”推不出“am2>bm2”,比如m=0,故D對;
故選:ABCD.
科目:高中數(shù)學 來源: 題型:
【題目】在①;②;③ 這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.
在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為橢圓的右焦點,且橢圓長軸的長為4,、是橢圓上的兩點;
(1)求橢圓標準方程;
(2)若直線經(jīng)過點,且,求直線的方程;
(3)若動點滿足:,直線與的斜率之積為,是否存在兩個定點、,使得為定值?若存在,求出、的坐標;若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是公差的等差數(shù)列,且.
(1)求的前項的和;
(2)若,問在數(shù)列中是否存在一項(是正整數(shù)),使得成等比數(shù)列,若存在,求出的值,若不存在,請說明理由;
(3)若存在自然數(shù)(是正整數(shù)),滿足,使得成等比數(shù)列,求所有整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列滿足,其中A,B是兩個確定的實數(shù),
(1)若,求的前n項和;
(2)證明:不是等比數(shù)列;
(3)若,數(shù)列中除去開始的兩項外,是否還有相等的兩項,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有流量均為的兩條河流匯合于某處后,不斷混合,它們的含沙量分別為和.假設(shè)從匯合處開始,沿岸設(shè)有若干個觀測點,兩股水流在流往相鄰兩個觀測點的過程中,其混合效果相當于兩股水流在1秒內(nèi)交換的水量,其交換過程為從A股流入B股的水量,經(jīng)混合后,又從B股流入A股水并混合,問從第幾個觀測點開始,兩股河水的含沙量之差小于.(不考慮泥沙沉淀).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點在軸的負半軸上.若(為原點),且,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com