【題目】若正實數(shù)a,b滿足a+b=1,則( )
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值
【答案】C
【解析】解:∵正實數(shù)a,b滿足a+b=1,
∴ = =2+ ≥2+2=4,故 有最小值4,故A不正確.
由基本不等式可得 a+b=1≥2 ,∴ab≤ ,故ab有最大值 ,故B不正確.
由于 =a+b+2 =1+2 ≤2,∴ ≤ ,故 有最大值為 ,故C正確.
∵a2+b2 =(a+b)2﹣2ab=1﹣2ab≥1﹣ = ,故a2+b2有最小值 ,故D不正確.
故選:C.
由于 = =2+ ≥4,故A不正確.
由基本不等式可得 a+b=1≥2 ,可得 ab≤ ,故B不正確.
由于 =1+2 ≤2,故 ≤ ,故 C 正確.
由a2+b2 =(a+b)2﹣2ab≥1﹣ = ,故D不正確.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】葫蘆島市交通局為了解機動車駕駛員對交通法規(guī)的知曉情況,對渤海、豐樂、安寧、天正四個社區(qū)做分層抽樣調(diào)查.其中渤海社區(qū)有駕駛員96人.若在渤海、豐樂、安寧、天正四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則豐樂、安寧、天正三個社區(qū)駕駛員人數(shù)是多少( )
A.101
B.808
C.712
D.89
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級從甲、乙兩個班級各選出8名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績的平均分是86,乙班學(xué)生成績的中位數(shù)是83,則 的值為( )
A.9
B.10
C.11
D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位實行休年假制度三年以來,50名職工休年假的次數(shù)進行的調(diào)查統(tǒng)計結(jié)果如表所示:
根據(jù)下表信息解答以下問題:
休假次數(shù) | 0 | 1 | 2 | 3 |
人數(shù) | 5 | 10 | 20 | 15 |
(1)從該單位任選兩名職工,用η表示這兩人休年假次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(4,6)上有且只有一個零點”為事件A,求事件A發(fā)生的概率P;
(2)從該單位任選兩名職工,用ξ表示這兩人休年假次數(shù)之差的絕對值,求隨機變量ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓x2+y2=5x內(nèi),過點 有n條弦的長度成等差數(shù)列,最短弦長為數(shù)列的首項a1 , 最長弦長為an , 若公差 ,那么n的取值集合 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,0)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,底面ABC等邊三角形,E,F(xiàn)分別是BC,CC1的中點.求證: (Ⅰ) EF∥平面A1BC1;
(Ⅱ) 平面AEF⊥平面BCC1B1 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com