12.已知在(2x+$\frac{3}{{\root{3}{x}}}$)n的展開(kāi)式中,第3項(xiàng)的二項(xiàng)式系數(shù)與第2項(xiàng)的二項(xiàng)式系數(shù)的比為5:2.
(Ⅰ)求含x2的項(xiàng)的系數(shù);
(Ⅱ)求展開(kāi)式中有理項(xiàng).

分析 (Ⅰ)由條件求得n=6,在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于2,求出r的值,即可求得含x2的項(xiàng)的系數(shù).
(Ⅱ)在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于整數(shù),求出r的值,即可求得求展開(kāi)式中的有理項(xiàng).

解答 解:(Ⅰ)由題意可得 $\frac{{C}_{n}^{2}}{{C}_{n}^{1}}$=$\frac{5}{2}$,∴n=6,它的通項(xiàng)公式為 Tr+1=${C}_{6}^{r}$•26-r•3r•${x}^{6-\frac{4}{3}r}$,
令6-$\frac{4r}{3}$=2,求得r=3,故含x2的項(xiàng)的系數(shù)為${C}_{6}^{3}$•23•33=4320.
(Ⅱ)令6-$\frac{4r}{3}$∈Z,求得r=0,3,6,
故展開(kāi)式中有理項(xiàng)為 T1=${C}_{6}^{0}$•26•x6,T4=${C}_{6}^{3}$•23•33•x2,T7=${C}_{6}^{6}$•36•x-2

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x-$\frac{π}{2}$),則下列結(jié)論中正確的是( 。
A.函數(shù)y=f(x)•g(x)的最小正周期為2π
B.函數(shù)y=f(x)•g(x)的最大值為1
C.函數(shù)y=f(x)•g(x)的一個(gè)單調(diào)遞增區(qū)間為(-$\frac{π}{4}$,$\frac{π}{4}}$)
D.f(x)與g(x)的奇偶性相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,設(shè)橢圓C:$\frac{x^2}{a^2}$+y2=1(a>1)
(Ⅰ)求直線y=kx+1被橢圓截得到的弦長(zhǎng)(用a,k表示)
(Ⅱ)若任意以點(diǎn)A(0,1)為圓心的圓與橢圓至多有三個(gè)公共點(diǎn),求橢圓的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,tanA是以-4為第三項(xiàng),4為第七項(xiàng)的等差數(shù)列的公差,tanB是以2為公差,9為第五項(xiàng)的等差數(shù)列的第二項(xiàng),試判斷這個(gè)三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.己知向量$\overrightarrow{a}$=(cosx,2sinx),$\overrightarrow$=(2cosx,$\sqrt{3}$cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)用五點(diǎn)法作出函數(shù)f(x)在一個(gè)周期的圖象;
(2)寫(xiě)出函數(shù)f(x)單調(diào)遞增區(qū)間和對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某晚會(huì)有2個(gè)歌唱節(jié)目和5個(gè)舞蹈節(jié)目依次表演,分別按照下列要求,可以排多少種節(jié)自單?(用數(shù)字作答)
(1)2個(gè)唱歌節(jié)目連續(xù)表演,5個(gè)舞蹈也連續(xù)表演;
(2)歌唱節(jié)目A不能在第一個(gè),歌唱節(jié)目B也不能在最后一個(gè)表演;
(3)歌唱節(jié)目A,B之間至少安排3個(gè)舞蹈節(jié)目.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{kx}{{x}^{2}+3k}$(k>0).
(1)若f(x)>m的解集為{x|x<-3或x>-2},求不等式5mx2+$\frac{k}{2}$x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.將3個(gè)球隨機(jī)地放入4個(gè)杯子中去,則杯子中球的最大值為2的概率為$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=x5,求f′(-1),f′($\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案