12.用五點(diǎn)法作函數(shù)y=2sin(2x+$\frac{π}{3}$)的簡圖; 并求函數(shù)的單調(diào)減區(qū)間以及函數(shù)取得最大值時(shí)x的取值?

分析 (1)利用列表、描點(diǎn)、連線,即可畫出函數(shù)的圖象;
(2)由三角函數(shù)的圖象與性質(zhì):結(jié)合圖象,即可得出結(jié)論.

解答 解:(1)列表如下:

x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
2x+$\frac{π}{3}$        0$\frac{π}{2}$ π$\frac{3π}{2}$ 2π
y=2sin(2x+$\frac{π}{3}$)                     
0
2 0-20
描點(diǎn)、連線,得圖.如圖所示;

(2)由三角函數(shù)的圖象與性質(zhì)可知:當(dāng)x=$\frac{π}{12}$+kπ,k∈Z時(shí),函數(shù)y取得最大值為2;
函數(shù)y在R上的單調(diào)遞減區(qū)間為[$\frac{π}{12}$+kπ,$\frac{7π}{12}$+kπ],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了“五點(diǎn)法”作圖問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=x3+ax2+3x-9,已知x=-3是函數(shù)f(x)的一個(gè)極值點(diǎn),則實(shí)數(shù)a=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x3+ax2+bx+c,給出下列結(jié)論:
①函數(shù)f(x)與x軸一定存在交點(diǎn);
②當(dāng)a2-3b>0時(shí),函數(shù)f(x)既有極大值也有極小值;
③若x0是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,x0)單調(diào)遞減;
④若f′(x0)=0,則x0是f(x)的極值點(diǎn).
其中確結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.偶函數(shù)f(x)滿足f(1-x)=f(1+x),且在x∈[0,1]時(shí),f(x)=$\sqrt{2x-{x}^{2}}$,若直線kx-y+k=0(k>0)與函數(shù)f(x)的圖象有且僅有三個(gè)交點(diǎn),則k的取值范圍是$(\frac{{\sqrt{15}}}{15},\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex(x2-2x+2-a2)(a>0),g(x)=x2+6x+c(c∈R).
(Ⅰ)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=-4x-2,求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=1時(shí),對(duì)?x1∈[-2,2],?x2∈[-2,2],使f(x1)<g(x2)成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,有下列五個(gè)說法:
①S6為Sn的最大值,②S11>0,③S12<0,④S13<0,⑤S8-S5>0,
其中說法正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.以下四個(gè)命題中,正確的個(gè)數(shù)是( 。
①命題“若f(x)是周期函數(shù),則f(x)是三角函數(shù)”的否命題是“若f(x)是周期函數(shù),則f(x)不是三角函數(shù)”;
②命題“存在x∈R,x2-x>0”的否定是“對(duì)于任意x∈R,x2-x<0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要條件;
④若函數(shù)f(x)在(2015,2017)上有零點(diǎn),則一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{4}{5}t}\\{y=-1-\frac{3}{5}t}\end{array}\right.$(t為參數(shù)),求直線l被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角的終邊經(jīng)過點(diǎn)(4,-3),則tanα=( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案