4.以下四個命題中,正確的個數(shù)是( 。
①命題“若f(x)是周期函數(shù),則f(x)是三角函數(shù)”的否命題是“若f(x)是周期函數(shù),則f(x)不是三角函數(shù)”;
②命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x<0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要條件;
④若函數(shù)f(x)在(2015,2017)上有零點(diǎn),則一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

分析 ①根據(jù)命題的否命題的定義進(jìn)行判斷,
②根據(jù)含有量詞的命題的否定進(jìn)行判斷,
③根據(jù)充分條件和必要條件的定義進(jìn)行判斷,
④根據(jù)將函數(shù)零點(diǎn)的定義進(jìn)行判斷.

解答 解:①命題“若f(x)是周期函數(shù),則f(x)是三角函數(shù)”的否命題是“若f(x)不是周期函數(shù),則f(x)不是三角函數(shù)”;故①錯誤,
②命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x≤0”;故②錯誤
③在△ABC中,“sinA>sinB”等價為a>b,則等價為“A>B”,故,“sinA>sinB”是“A>B”成立的充要條件;故③正確,
④若函數(shù)f(x)在(2015,2017)上有零點(diǎn),則一定有f(2015)•f(2017)<0.錯誤,當(dāng)f(2015)•f(2017)>0也可能,故④錯誤.
故選:B

點(diǎn)評 本題主要考查命題的真假判斷,涉及的知識點(diǎn)較多,綜合性較強(qiáng),但難度不大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=lnx-x
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+1,g(x)=2ax+b(a,b∈R).
(1)若a=$\frac{1}{2}$,b=-2,求函數(shù)G(x)=f(x)g(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求證:函數(shù)F(x)=$\frac{g(x)}{f(x)}$有一個極小值和一個極大值點(diǎn);
(3)當(dāng)b=0時,若對任意的x∈(0,∞),f(x)+g(x)<ex恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.用五點(diǎn)法作函數(shù)y=2sin(2x+$\frac{π}{3}$)的簡圖; 并求函數(shù)的單調(diào)減區(qū)間以及函數(shù)取得最大值時x的取值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′;
②若函數(shù)h(x)=cos4x-sin4x,則h′($\frac{π}{12}$)=0;
③若函數(shù)g(x)=(x-1)(x-2)(x-3)…(x-2015)(x-2016),則g′(2016)=2015!;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件.
其中假命題為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1,曲線f(x)=ex在點(diǎn)(0,1)處的切線方程為2mx-ny+1=0,則該雙曲線的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1存在一點(diǎn)P,與坐標(biāo)原點(diǎn)O、右焦點(diǎn)F2構(gòu)成正三角形,則雙曲線的離心率為$\sqrt{3}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在四棱錐S-ABCD中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,AB=3.
(1)求SA與BC所成角的余弦值;
(2)求證:AB⊥SD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.新生兒Apgar評分,即阿氏評分是對新生兒出生后總體狀況的一個評估,主要從呼吸、心率、反射、膚色、肌張力這幾個方面評分,滿10分者為正常新生兒,評分7分以下的新生兒考慮患有輕度窒息,評分在4分以下考慮患有重度窒息,大部分新生兒的評分多在7-10分之間,某市級醫(yī)院婦產(chǎn)科對1月份出生的新生兒隨機(jī)抽取了16名,以如表格記錄了他們的評分情況.
 分?jǐn)?shù)段[0,7)[7,8)[8,9)[9,10)
 新生兒數(shù)
(1)現(xiàn)從16名新生兒中隨機(jī)抽取3名,求至多有1名評分不低于9分的概率;
(2)以這16名新生兒數(shù)據(jù)來估計本年度的總體數(shù)據(jù),若從本市本年度新生兒任選3名,記X表示抽到評分不低于9分的新生兒數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案