已知等差數(shù)列 {an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于( 。
A、.-6B、-4
C、-8D、-10
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等差數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的通項(xiàng)公式,利用a1,a3,a4成等比數(shù)列,求出首項(xiàng)a1即可.
解答: 解:∵等差數(shù)列 {an}的公差d=2,且a1,a3,a4成等比數(shù)列,
a32=a1a4
(a1+4)2=a1(a1+6),
解得a1=-8;
∴a2=a1+d=-8+2=-6.
故選:A.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的綜合應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈{-1,2,3},b∈{0,1,3,4},R∈{1,2},則方程(x-a)2+(y+b)2=R2所表示的不同的圓的個(gè)數(shù)有(  )
A、3×4×2=24
B、3×4+2=14
C、(3+4)×2=14
D、3+4+2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程ax2+2x+1=0至少有一個(gè)實(shí)根的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求滿(mǎn)足下列條件的實(shí)數(shù)x,y的值;
(1)(x-3y)+(2x+3y)i=5+i;
(2)(x2-y2)+2xyi=6i-8;
(3)2x2-5x+3+(y2+y-6)i=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin2θ>0,tan2θ=-
60
11
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到凼數(shù)y=lgx的圖象,只需把凼數(shù)y=lg
x-3
10
的圖象上所有的點(diǎn)( 。
A、向左平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度
B、向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度
C、向左平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度
D、向右平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+bx+c=0}={1},求b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x||x-1|≤1},B={x|x2-1≤1},則A∪B=( 。
A、[-
2
,0]
B、[-
2
,
2
]
C、[0,
2
]
D、[-
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線(xiàn),α,β是兩個(gè)不同的平面,則下列說(shuō)法正確的是( 。
A、若m⊥n,m⊥α,則n∥α
B、若m∥α,α⊥β,則m⊥β
C、若m⊥β,α⊥β,則m∥α
D、若m⊥n,m⊥α,n⊥β,則α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案