【題目】設(shè)為奇函數(shù),為實常數(shù).

(1)求的值;

(2)證明:在區(qū)間內(nèi)單調(diào)遞增;

(3)若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1);(2)證明見解析;(3).

【解析】試題分析:(1)因為函數(shù)是奇函數(shù),滿足,即 ,求得的值;(2)根據(jù)(1)的結(jié)果可知 ,根據(jù)函數(shù)單調(diào)性的定義證明 上是減函數(shù),再利用復(fù)合函數(shù)單調(diào)性的判斷原則判斷函數(shù)的單調(diào)性;(3)設(shè),根據(jù)(2)的結(jié)果可知是單調(diào)遞增函數(shù),那么將恒成立問題轉(zhuǎn)化為 ,可求的取值范圍.

試題解析:(1)∵函數(shù)是奇函數(shù),

,

,

,

,

經(jīng)檢驗,.

(2)由(1)可知,,

,由函數(shù)單調(diào)性的定義可證明上為減函數(shù),

上為增函數(shù).

(3)設(shè),

則函數(shù)上為增函數(shù),

恒成立,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足,且的最小值是.

(1)求的解析式;

(2)若關(guān)于的方程在區(qū)間上有唯一實數(shù)根,求實數(shù)的取值范圍;

(3)函數(shù),對任意都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足:對于st∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數(shù)f (x)“T函數(shù)”.

(I)試判斷函數(shù)f1(x)=x2f2(x)=lg(x+1)是否是“T函數(shù)”,并說明理由;

(Ⅱ)設(shè)f (x)“T函數(shù)”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證f (x0) =x0;

(Ⅲ)試寫出一個“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的個數(shù)最少.(只需寫出結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:關(guān)于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1 , F2分別是C: + =1(a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意實數(shù)均有,其中常數(shù)為負數(shù),且在區(qū)間上有表達式.

(1)寫出上的表達式,并寫出函數(shù)上的單調(diào)區(qū)間(不用過程,直接寫出即可);

(2)求出上的最小值與最大值,并求出相應(yīng)的自變量的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)2
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個零點x1 , x2 , 證明x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),則下列結(jié)論正確的是__________.(寫出所有正確的編號)的最小正周期為;在區(qū)間上單調(diào)遞增;取得最大值的的集合為 ④將的圖像向左平移個單位,得到一個奇函數(shù)的圖像

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年初的時候,國家政府工作報告明確提出, 年要堅決打好藍天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少, 月至月的用煤量如下表所示:

月份

用煤量(千噸)

(1)由于某些原因, 中一個數(shù)據(jù)丟失,但根據(jù)月份的數(shù)據(jù)得出樣本平均值是,求出丟失的數(shù)據(jù);

(2)請根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達到預(yù)期,若誤差均不超過,則認為該地區(qū)的改造已經(jīng)達到預(yù)期,否則認為改造未達預(yù)期,請判斷該地區(qū)的煤改電項目是否達預(yù)期?

(參考公式:線性回歸方程,其中

查看答案和解析>>

同步練習(xí)冊答案