【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學(xué)為弘揚“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )

A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名

C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名

【答案】C

【解析】若每場比賽第一名得分為4,則甲最后得分最高為,不合題意; 三人總分為,每場總分?jǐn)?shù)為 分,所以,因此 甲比賽名次為5個第一,一個第三;而乙比賽名次有1個第一,所以丙沒有一場比賽獲得第一名,因此選C.即乙比賽名次為1個第一,4個第三,1個第二.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切,且被軸截得的弦長為,圓的面積小于13.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若點,點是圓上一點,點的重心,求點的軌跡方程;

(3)設(shè)過點的直線與圓交于不同的兩點,,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) , 對任意, 不等式恒成立,則正數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦曼德爾布羅特( )在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立為解決傳統(tǒng)眾多領(lǐng)域的難題提供了全新的思路.下圖是按照分型的規(guī)律生長成的一個樹形圖,則第10行的空心圓的個數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時,解不等式;

(2)若關(guān)于的方程的解集中恰有兩個元素,求的取值范圍;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若對任意的m,,,都有

,求a的取值范圍.

若不等式對任意都恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①集合與集合是相等集合;

②不存在實數(shù),使為奇函數(shù);

③若,且f(1)=2,則

④對于函數(shù) 在同一直角坐標(biāo)系中,若,則函數(shù)的圖象關(guān)于直線對稱;

⑤對于函數(shù) 在同一直角坐標(biāo)系中,函數(shù)的圖象關(guān)于直線對稱;其中正確說法是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,若f()=1,b=1,c= , 求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ae2x﹣be2x﹣cx(a,b,c∈R)的導(dǎo)函數(shù)f′(x)為偶函數(shù),且曲線y=f(x)在點(0,f(0))處的切線的斜率為4﹣c.
(1)確定a,b的值;
(2)若c=3,判斷f(x)的單調(diào)性;
(3)若f(x)有極值,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案