2.若某校高一年級8個年級合唱比賽的得分如下:89、87、93、91、96、94、90、92,這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別為( 。
A.91.5和91.5B.91.5和92C.91和91.5D.92和92

分析 把這組數(shù)從小到大為排列得到位于中間位置的兩位數(shù)是91,92,從而求出這組數(shù)據(jù)的中位數(shù),再求出這組數(shù)據(jù)的平均數(shù),由此能求出結(jié)果.

解答 解:這組數(shù)從小到大為:
87,89,90,91,92,93,94,96,
位于中間位置的兩位數(shù)是91,92,
∴這組數(shù)據(jù)的中位數(shù)為:$\frac{91+92}{2}$=91.5,
這組數(shù)據(jù)的平均數(shù)為:$\overline{x}$=$\frac{1}{8}$(89+87+93+91+96+94+90+92)=91.5,
故選:A.

點(diǎn)評 本題考查一組數(shù)據(jù)的中位數(shù)和平均數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意中位數(shù)、平均數(shù)的定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知m+4n=4(m>0,n>0),則mn的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.現(xiàn)有四個函數(shù):①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的圖象(部分)如圖:

則按照從左到右圖象對應(yīng)的函數(shù)序號安排正確的一組是(  )
A.①④③②B.③④②①C.④①②③D.①④②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\vec a$=(cosα,-1),$\vec b$=(2,sinα),且$\vec a•\vec b=0$
(1)求tan(α+$\frac{π}{4}$)的值;
(2)求$\frac{sin2α}{{{{sin}^2}α-cos2α-1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知長方體ABCD-A1B1C1D1,底面是邊長為1的正方形,高AA1=2.
求:(1)異面直線BD與AB1所成角的余弦值;
(2)若P為C1D1上的任意一點(diǎn),求四面體P-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,若sinA:sinB:sinC=1:$\sqrt{7}$:3,則∠B的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)隨機(jī)變量X~N(2,σ2),若P(X≤0)=0.1,則P(2≤X<4)=( 。
A.0.1B.0.2C.0.4D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xlnx,g(x)=(-x2+ax-3)ex(a為實(shí)數(shù)).
(1)當(dāng)a=4時,求函數(shù)y=g(x)在x=0處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)如果關(guān)于x的方程g(x)=2exf(x)在區(qū)間[$\frac{1}{e}$,e]上有兩個不等實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知兩曲線的參數(shù)方程為C1:$\left\{\begin{array}{l}x=\sqrt{5}cosθ\\ y=sinθ\end{array}$,(θ為參數(shù));C2:$\left\{\begin{array}{l}x=\frac{5}{4}{t^2}\\ y=t\end{array}$,(t為參數(shù)),且兩曲線的交點(diǎn)為A,B兩點(diǎn).
(1)求兩曲線的普通方程以及線段AB的長度;
(2)若點(diǎn)P在曲線C1上,且△PAB的面積為$\frac{{6\sqrt{5}}}{5}$,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案