17.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=-2,則|$\overrightarrow{a}$-t$\overrightarrow$|(t∈R)的最小值為( 。
A.1B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2

分析 根據(jù)向量的數(shù)量積的運算法則和利用二次函數(shù)的性質求得它的最小值.

解答 解:由|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=-2,
則|$\overrightarrow{a}$-t$\overrightarrow$|2=|$\overrightarrow{a}$|2+t2|$\overrightarrow$|2-2t$\overrightarrow{a}$•$\overrightarrow$=4+4t2+4t=4(t+$\frac{1}{2}$)2+3,
∴當t=-$\frac{1}{2}$時,|$\overrightarrow{a}$-t$\overrightarrow$|2的最小值為3,
當t=-$\frac{1}{2}$時,則|$\overrightarrow{a}$-t$\overrightarrow$|(t∈R)的最小值為$\sqrt{3}$,
故選:B

點評 本題主要考查平面向量的模長公式,兩個向量的數(shù)量積的定義,二次函數(shù)的性質,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=loga(x+$\sqrt{{x}^{2}-1}$),(a>1,x≥1)
(1)求它的反函數(shù)f-1(x),并指出它的定義域;
(2)由f-1(n)<$\frac{{2}^{n}+{2}^{-n}}{2}$(n∈N*),求a的取值范圍;
(3)設bn=f-1(n),設Sn=b1+b2+…+bn,求證:當a在(2)的范圍內(nèi)對任意自然數(shù)n都有Sn<2n$-(\frac{\sqrt{2}}{2})^{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設向量$\overrightarrow{a}$=(cos25°,sin25°),$\overrightarrow$=(cos25°,sin155°),則$\overrightarrow{a}$•$\overrightarrow$的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知f(x)=$\frac{1}{2}$x2+2xf′(2016)+2016lnx,則f′(2016)=( 。
A.2016B.-2016C.2017D.-2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一個多面體的三視圖如圖所示,則該多面體的表面積為( 。
A.$\frac{22}{3}$B.21C.21+$\frac{\sqrt{3}}{2}$D.21+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在等差數(shù)列{an}中,其前n項和為Sn,滿足S5-S2=21,2a2-a4=-1
(1)求數(shù)列{an}的通項公式;
(2)若bn=a${\;}_{{2}^{n}}$,求數(shù)列{bn}的前n項和的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等腰直角三角形ABC中,∠C=90°,AC=BC=1,點M,N分別是AB,BC中點,點P是△ABC(含邊界)內(nèi)任意一點,則$\overrightarrow{AN}$•$\overrightarrow{MP}$的取值范圍是( 。
A.[-$\frac{3}{4}$,$\frac{3}{4}$]B.[-$\frac{1}{4}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,$\frac{1}{4}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.數(shù)列{an},{bn}中,an=ln$\frac{{θ}^{n}-1}{{θ}^{n}+1}$+2n,bn=ln$\frac{{θ}^{n}+1}{{θ}^{n}-1}$-n,θ為常數(shù),若a8=20,則b8=( 。
A.-12B.-6C.12D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.拋物線y2=mx(m>0)的焦點為F,拋物線的弦AB經(jīng)過點F,并且以AB為直徑的圓與直線x=-3相切于點M(-3,6),則線段AB的長為( 。
A.12B.16C.18D.24

查看答案和解析>>

同步練習冊答案