分析 (1)根據(jù)題意和冪函數(shù)的性質(zhì)列出不等式,由一元二次不等式的解法求出p的取值范圍,由p∈z求出p的值,分別代入后利用f(x)是偶函數(shù)驗證即可;
(2)由(1)化簡g(x)的解析式,對q進行分類討論,由條件和函數(shù)單調(diào)性分別判斷并求出q的值.
解答 解:(1)∵冪函數(shù)f(x)在(0,+∞)上是增函數(shù),
∴$-\frac{1}{2}{p}^{2}+p+\frac{3}{2}>0$,則p2-2p-3<0,
解得-1<p<3,
由p∈z得,p=0,1,2,
當p=0或2時,$f(x)={x^{\frac{3}{2}}}$不符合f(x)是偶函數(shù)(舍),
當p=1時,f(x)=x2符合題意,
∴p=1,f(x)=x2;
(2)由(1)得,g(x)=(2q-1)x2+x+1,
當2q-1=0即$q=\frac{1}{2}$時,g(x)=x+1在R上單增(舍)
當2q-1≠0即$q≠\frac{1}{2}$時,若使g(x)在(-∞,-4]單減,且在(-4,0)增,
則對稱軸為x=-4,即$-\frac{1}{2(2q-1)}=-4$,得 $q=\frac{9}{16}$.
經(jīng)驗證:當$q=\frac{9}{16}$時,能滿足f(x)在[-x,-4]上單減,在(-4,0)上單增.
∴存在$q=\frac{9}{16}$符合題意.
點評 本題考查了冪函數(shù)的單調(diào)性和奇偶性,一元二次函數(shù)的性質(zhì),以及一元二次不等式的解法,考查分類討論思想,化簡、計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{2}{3}π+kπ,0)$ | B. | $(\frac{2}{3}π+2kπ,0)$ | C. | $(\frac{2}{3}+2k,0)$ | D. | $(\frac{2}{3}+k,0)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,$\frac{1}{2}$) | B. | (-1,1) | C. | (-2,$\frac{1}{2}$) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com