A. | (-1,$\frac{1}{2}$) | B. | (-1,1) | C. | (-2,$\frac{1}{2}$) | D. | (-1,2) |
分析 首先畫(huà)出可行域,利用目標(biāo)函數(shù)的幾何意義求z的范圍.
解答 解:由x,y滿(mǎn)足的不等式組得到可行域如圖,
當(dāng)過(guò)三角形區(qū)域的(2,2)時(shí),z表示的直線(xiàn)斜率最小為-2,當(dāng)與($\frac{1}{3},-\frac{4}{3}$)連接時(shí)斜率最大$\frac{1}{2}$;
所以z的范圍為(-2,$\frac{1}{2}$).
故選C.
點(diǎn)評(píng) 本題考查了簡(jiǎn)單線(xiàn)性規(guī)劃問(wèn)題;利用目標(biāo)函數(shù)的幾何意義求最值是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+y2=$\frac{1}{2}$ | B. | x2+(y-1)2=$\frac{1}{2}$ | C. | (x+1)2+y2=$\frac{1}{4}$ | D. | x2+(y+1)2=$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com