12.下列四個命題:
①平面α∩β=l,a?α,b?β,若a,b為異面直線,則a,b中至少有一條與l相交.
②若a,b∈R,且a+b=3,則2a+2b的最小值為4$\sqrt{2}$.
③若x∈R,則“復數(shù)z=(1-x2)+(1+x)i為純虛數(shù)”是“l(fā)g|x|=0”必要不充分條件.
④正項數(shù)列{an},其前n項和為Sn,若Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),則 an=$\sqrt{n}$-$\sqrt{n-1}$.(n∈N+).
其中真命題有①②④.(填真命題序號)

分析 ①根據(jù)面面相交和直線的關系進行判斷,
②根據(jù)基本不等式的應用進行判斷即可,
③根據(jù)復數(shù)的概念以及充分條件和必要條件的定義進行判斷,
④利用歸納法進行證明即可.

解答 解:①平面α∩β=l,a?α,b?β,若a,b為異面直線,則a,b中至少有一條與l相交,正確,
若a,b都與l平行,則a∥b與若a,b為異面直線矛盾.故①正確,
②若a,b∈R,且a+b=3,則2a+2b≥2$\sqrt{{2}^{a}•{2}^}$=2$\sqrt{{2}^{a+b}}$=2$\sqrt{{2}^{3}}$=4$\sqrt{2}$,則最小值為4$\sqrt{2}$正確,故②正確.
③若x∈R,則“復數(shù)z=(1-x2)+(1+x)i為純虛數(shù)”,則$\left\{\begin{array}{l}{1-{x}^{2}=0}\\{1+x≠0}\end{array}\right.$,即$\left\{\begin{array}{l}{x=±1}\\{x≠-1}\end{array}\right.$,則x=1,此時lg|x|=0成立,即充分性成立,故③錯誤,
④下用數(shù)學歸納法證明:an=$\sqrt{n}$-$\sqrt{n-1}$.
①n=1時,a1=1,滿足${a}_{n}=\sqrt{n}-\sqrt{n-1}$;
②假設當n=k(k≥1)時,結(jié)論成立,即${a_k}=\sqrt{k}-\sqrt{k-1}$,則當n=k+1時,有${a_{k+1}}={S_{k+1}}-{S_k}=\frac{1}{2}({a_{k+1}}+\frac{1}{{{a_{k+1}}}})-\frac{1}{2}({a_k}+\frac{1}{a_k})$
∴${a_{k+1}}-\frac{1}{{{a_{k+1}}}}=-{a_k}-\frac{1}{a_k}=-\sqrt{k}+\sqrt{k-1}-\sqrt{k}-\sqrt{k-1}=-2\sqrt{k}$
解方程得${a_{k+1}}=\sqrt{k+1}-\sqrt{k}$,即當n=k+1時,結(jié)論也成立
由①②可知,猜想成立,故④正確,
故答案為:①②④

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,有一定的難度.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知線段AB的兩端點坐標分別為點A(-2,1)與B(4,-3),求線段AB的垂直平分線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,an+1=c-$\frac{1}{a_n}$,設c=$\frac{5}{2},{b_n}=\frac{1}{{{a_n}-2}}$,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}的前n項和為Sn,且滿足Sn-2an-n=0(n∈N+),則數(shù)列{an-1}的通項公式為-2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}滿足條件an+1=$\frac{1}{{1-{a_n}}}$.
(1)若a1=$\frac{1}{2}$,求a2,a3,a4的值.
(2)已知對任意的n∈N+,都有an≠1,求證:an+3=an對任意的正整數(shù)n都成立;
(3)在(1)的條件下,求a2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=-x3+x2+tx+1在(-1,1)上是增函數(shù),則t的取值范圍是( 。
A.t>5B.t<5C.t≥5D.t≤5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-2y-3≤0\\ x+2y-3≤0\\ x≥-3\end{array}\right.$,則z=-2x+3y的取值范圍是( 。
A.[-6,17]B.[-5,15]C.[-6,15]D.[-5,17]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$則z=x-2y的最小值是( 。
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,從甲地到乙地有2條路,從乙地到丁地有3條路;從甲地到丙地有4條路,從丙地到丁地有2條路.從甲地到丁地共有多少條不同的路線?

查看答案和解析>>

同步練習冊答案