若實(shí)數(shù)x,y滿足
x-y+1≤0
x>0
y≤2
,則目標(biāo)函數(shù)z=x+y的最大值是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,由圖得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件作出可行域如圖,

由z=x+y,得y=-x+z.
由圖可知,當(dāng)目標(biāo)函數(shù)過B(1,2)時(shí),目標(biāo)函數(shù)z=x+y有最大值.
z=1+2=3.
故答案為:3.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意實(shí)數(shù)x,<x>表示不小于x的最小整數(shù),如<1.1>=2,<-1.1>=-1,則“|x-y|<1”是“<x>=<y>”的( 。l件.
A、充分不必要
B、必要不充分
C、充分
D、既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù){an}的前n項(xiàng)和為Sn,滿足S5S6+15=0.
(Ⅰ)當(dāng)S5=5時(shí),若bn=|an|,求bn前n項(xiàng)和Tn
(Ⅱ)求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xekx(k≠0)和函數(shù)g(x)=x3+ax-b.
(Ⅰ)曲線y=f(x)在點(diǎn)(0,f(0))處的切線與曲線y=g(x)相切于點(diǎn)(1,g(1)),求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)f(x)在區(qū)間[-1,1]內(nèi)單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+2x,若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-1 )∪(2,+∞)
B、(-1,2)
C、(-2,1 )
D、(-∞,-2 )∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)閇-2,+∞),部分對(duì)應(yīng)值如下表,f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖,若f(x)<1,則x的范圍為
 

x-204
f(x)1-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(
π
4
-x)的一個(gè)單調(diào)增區(qū)間是( 。
A、[-
π
4
,
π
2
]
B、[-
π
4
,
4
]
C、[-
4
,-
π
4
]
D、[-
4
,
π
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題p:曲線
x2
a-2
-
y2
6-a
=1為雙曲線,命題q:函數(shù)f(x)=(4-a)x在R上是增函數(shù),且p∨q為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人參加一次射擊游戲,規(guī)則規(guī)定,每射擊一次,命中目標(biāo)得2分,未命中目標(biāo)得0分.已知甲、乙兩人射擊的命中率分別為
3
5
和p,且甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為2的概率是
9
20
.假設(shè)甲、乙兩人射擊是相互獨(dú)立的,則p的值為(  )
A、
1
4
B、
1
3
C、
2
3
D、
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案