已知平行四邊形的兩條邊所在直線的方程分別是,, 且它的對角線的交點(diǎn)是M(3,3),求這個(gè)平行四邊形其它兩邊所在直線的方程.
其他兩邊所在直線的方程是3x-y-16=0,x+y-11=0.
解析試題分析:依題意,由方程組x+y?1=0,3x?y+4=0,可解得平行四邊形ABCD的頂點(diǎn)A的坐標(biāo),再結(jié)合對角線的交點(diǎn)是M(3,3),可求得C點(diǎn)坐標(biāo),利用點(diǎn)斜式即可求得其他兩邊所在直線的方程.
試題解析:聯(lián)立方程組x+y?1=0,3x?y+4=0,
解得x=?,y=,
所以平行四邊形ABCD的頂點(diǎn)A(?,),
設(shè)C(x0,y0),由題意,點(diǎn)M(3,3)是線段AC的中點(diǎn),
∴x0?=6,y0+=6,
解得x0=,y0=,
∴C(,),
由已知,直線AD的斜率kAD=3.
∵直線BC∥AD,
∴直線BC的方程為3x-y-16=0,
由已知,直線AB的斜率kAB=-1,
∵直線CD∥AB,
∴直線CD的方程為x+y-11="0,"
因此,其他兩邊所在直線的方程是3x-y-16=0,x+y-11=0.
考點(diǎn):1.直線的一般式方程與直線的平行關(guān)系;2.直線的一般式方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓:內(nèi)有一點(diǎn),過點(diǎn)作直線交圓于,兩點(diǎn).
(1)當(dāng)經(jīng)過圓心時(shí),求直線的方程;
(2)當(dāng)弦被點(diǎn)平分時(shí),寫出直線的方程.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線:,(不同時(shí)為0),:,
(1)若且,求實(shí)數(shù)的值;
(2)當(dāng)且時(shí),求直線與之間的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:3x-y+3=0,求:
(1)過點(diǎn)P(4,5)且與直線l垂直的直線方程;
(2)與直線平行且距離等于的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求經(jīng)過直線的交點(diǎn)M,且滿足下列條件的直線方程:
(1)與直線2x+3y+5=0平行; (2)與直線2x+3y+5=0垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓交于兩點(diǎn).
(1)求過A、B兩點(diǎn)的直線方程;
(2)求過兩點(diǎn)且圓心在直線上的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
解答下列問題:
(1)求平行于直線3x+4y 2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y 5=0且與點(diǎn)P( 1,0)的距離是的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點(diǎn)、、,邊上的中線所在直線為.(1)求的方程;(2)求點(diǎn)A關(guān)于直線的對稱點(diǎn)的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com