已知向量
a
,
b
滿足:|
a
|=1,|
b
|=2,|
a
-
b
|=2則|
a
+
b
|=( 。
A、
6
B、
5
C、
2
D、1
考點:向量的三角形法則
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的性質(zhì)即可得出.
解答: 解:∵|
a
|=1,|
b
|=2,|
a
-
b
|=2,
a
2
+
b
2
-2
a
b
=
5-2
a
b
=2
,解得
a
b
=
1
2

則|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
1+4+2×
1
2
=
6

故選:A.
點評:本題考查了數(shù)量積的運算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a=50.2,b=0.25,c=log0.25,a,b,c的大小關(guān)系為(  )
A、b<a<c
B、b<c<a
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
π
4
,
4
),
1+2sinαcosα
+
1-2sinαcosα
cosα
=4,則
sinα-cosα
2sinα+cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的參數(shù)方程為
x=2cosθ
y=2sinθ
(θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,若極軸與x軸的非負(fù)半軸重合,則直線l被圓C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合{(x,y)|
2x+y-4≤0
x+y≥0
x-y≥0
}
表示的平面區(qū)域為Ω,若在區(qū)域Ω內(nèi)任取一點P(x,y),則點P的坐標(biāo)滿足不等式x2+y2≤2的概率為( 。
A、
16
B、
π
16
C、
π
32
D、
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
x+1≥0
x-y≤1
,則目標(biāo)函數(shù)z=
y
x+2
的取值范圍為( 。
A、[-3,3]
B、[-3,-2]
C、[-2,2]
D、[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],求f(x2+1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐A-BCD中,M為CD的中點,則
AB
+
1
2
BD
+
BC
)=( 。
A、
AM
B、
CM
C、
BC
D、
1
2
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序,則輸出的S是( 。
A、17B、19C、21D、23

查看答案和解析>>

同步練習(xí)冊答案