13.(x-$\frac{1}{{x}^{2}}$)9的展開式中系數(shù)最大的項為$\frac{126}{{x}^{3}}$.

分析 利用二項展開式的通項公式求出通項,求出正的系數(shù),選出最大值.

解答 解:(x-$\frac{1}{{x}^{2}}$)9的展開式的通項為Tr+1=(-1)rC9rx9-3r,
∴展開式中系數(shù)最大的是當(dāng)r=4時,
∴系數(shù)最大的項是第五項為T5=C94•x-3=$\frac{126}{{x}^{3}}$,
故答案為:$\frac{126}{{x}^{3}}$.

點評 本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,求展開式中某項的系數(shù),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出以下命題:
①“a=0”是“函數(shù)f(x)=x2+ax,(x∈R)為偶函數(shù)的充要條件”;
②?x∈N,使x2≤x;
③命題“若α是銳角,則sinα>0”的否命題
其中說法正確的是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-4,y),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.實數(shù)a,b滿足:(2a)ln2=(3b)ln3和3lna=2lnb,則a=$\frac{1}{2}$,b=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(1+x)(2+x)(3+x)…(20+x)的展開式中x19的系數(shù)是210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.化簡:
(1)$\frac{cosα}{1-sinα}$=$\frac{1+sinα}{cosα}$;
(2)$\frac{tanαsinα}{tanα-sinα}$=$\frac{tanα+sinα}{tanαsinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$,則使得f(x2+$\frac{2}{3}$x+2)>f(-x2+x-1)成立的x的取值范圍是( 。
A.[-$\frac{3}{5}$,+∞)B.(-∞,$\frac{3}{5}$]C.(-$\frac{3}{5}$,+∞)D.$({-\frac{3}{5},\frac{3}{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,設(shè)F是橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的下焦點,直線y=kx-4(k>0)與橢圓相交于A、B兩點,與y軸交于點P
(1)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求k的值;
(2)求證:∠AFP=∠BF0;
(3)求面積△ABF的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}的前15項之和為$\frac{15π}{4}$,則tan(a7+a8+a9)=( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

同步練習(xí)冊答案