A. | [-$\frac{3}{5}$,+∞) | B. | (-∞,$\frac{3}{5}$] | C. | (-$\frac{3}{5}$,+∞) | D. | $({-\frac{3}{5},\frac{3}{5}})$ |
分析 根據(jù)函數(shù)的表達(dá)式可知函數(shù)f(x)為偶函數(shù),判斷函數(shù)在x大于零的單調(diào)性為遞增,根據(jù)偶函數(shù)關(guān)于原點(diǎn)對(duì)稱可知,距離原點(diǎn)越遠(yuǎn)的點(diǎn),函數(shù)值越大,可得|x2+$\frac{2}{3}$x+2|>|-x2+x-1|,解絕對(duì)值不等式即可.
解答 解:f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$定義域?yàn)镽,
∵f(-x)=f(x),
∴函數(shù)f(x)為偶函數(shù),
當(dāng)x>0時(shí),f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$單調(diào)遞增,
根據(jù)偶函數(shù)性質(zhì)可知:得f(x2+$\frac{2}{3}$x+2)>f(-x2+x-1)成立,
∴|x2+$\frac{2}{3}$x+2|>|-x2+x-1|,
∴x2+$\frac{2}{3}$x+2>x2-x+1,
∴x的范圍為(-$\frac{3}{5}$,+∞)
故選:C.
點(diǎn)評(píng) 考查了偶函數(shù)的性質(zhì)和利用偶函數(shù)圖象的特點(diǎn)解決實(shí)際問題,屬于基礎(chǔ)題型,應(yīng)牢記.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{4}{3}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{1}{2}$個(gè)單位長(zhǎng)度 | B. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向右平移$\frac{1}{2}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com