7.已知命題p:若x>y,則${(\frac{1}{2})^x}<{(\frac{1}{2})^y}$;命題q:若m>1,則函數(shù) y=x2+mx+1有兩個零點.在下列命題中:(1)p∧q;(2)p∨q;(3)p∧(¬q);(4)(¬p)∨q,為真命題的是( 。
A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)

分析 先判斷命題p,q的真假,再由復(fù)合命題真假判斷的真值表,可得答案.

解答 解:函數(shù)f(x)=${(\frac{1}{2})}^{x}$為減函數(shù),
若x>y,則${(\frac{1}{2})^x}<{(\frac{1}{2})^y}$,
故命題p:為真命題;
m>1時,x2+mx+1=0不一定有兩個根,
則命題q:函數(shù) y=x2+mx+1有兩個零點為假命題.
則:(1)p∧q為假命題;
(2)p∨q為真命題;
(3)p∧(¬q)為真命題;
(4)(¬p)∨q為假命題,
故選:C.

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,指數(shù)函數(shù)的圖象和性質(zhì),方程根的存在性與個數(shù)判斷等知識點,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ln(x+1)-$\frac{kx}{x+1}$+1(x>-1)
(1)討論f(x)的單調(diào)性;
(2)k>0,若f(x)的最小值為g(k),當(dāng)0<k1<k2且k1+k2=2,比較g(k1)與g(k2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,$AC=2,AB=2\sqrt{7},cos∠BAC=\frac{{2\sqrt{7}}}{7}$且D是BC的中點,則中線AD的長為( 。
A.2B.4C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在Rt△ABC中,∠ACB=90°,$\overrightarrow{BD}$=$\overrightarrow{DA}$,$\overrightarrow{AB}$=2$\overrightarrow{BE}$,則 $\overrightarrow{CD}•\overrightarrow{CA}+\overrightarrow{CE}•\overrightarrow{CA}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于實數(shù)m>-3,若函數(shù)$y={(\frac{1}{2})^x}$圖象上存在點(x,y)滿足約束條件$\left\{\begin{array}{l}x-y+3≥0\\ x+2y+3≥0\\ x≤m\end{array}\right.$,則實數(shù)m 的最小值為( 。
A.$\frac{1}{2}$B.-1C.-$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AD=AP,CD=2AB,CD⊥平面APD,AB∥CD,E為PD的中點.
(Ⅰ)求證:AE∥平面PBC;
(Ⅱ)求證:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x+2|-2|x-1|.
(Ⅰ)求不等式f(x)≥-2的解集M;
(Ⅱ)對任意x∈[a,+∞),都有f(x)≤x-a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow$=(1,m-$\frac{3}{2}$),$\overrightarrow{a}$∥$\overrightarrow$,則m=( 。
A.3B.0C.$\frac{13}{6}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案